Isolation and epitope mapping of staphylococcal enterotoxin B single-domain antibodies. 2014

Kendrick B Turner, and Dan Zabetakis, and Patricia Legler, and Ellen R Goldman, and George P Anderson
American Society for Engineering Education, Postdoctoral Fellow at the Naval Research Laboratory, Washington, DC 20375, USA. kendrick.turner.ctr@nrl.navy.mil.

Single-domain antibodies (sdAbs), derived from the heavy chain only antibodies found in camelids such as llamas have the potential to provide rugged detection reagents with high affinities, and the ability to refold after denaturation. We have isolated and characterized sdAbs specific to staphylococcal enterotoxin B (SEB) which bind to two distinct epitopes and are able to function in a sandwich immunoassay for toxin detection. Characterization of these sdAbs revealed that each exhibited nanomolar binding affinities or better.  Melting temperatures for the sdAbs ranged from approximately 60 °C to over 70 °C, with each demonstrating at least partial refolding after denaturation and several were able to completely refold. A first set of sdAbs was isolated by panning the library using adsorbed antigen, all of which recognized the same epitope on SEB. Epitope mapping suggested that these sdAbs bind to a particular fragment of SEB (VKSIDQFLYFDLIYSI) containing position L45 (underlined), which is involved in binding to the major histocompatibility complex (MHC). Differences in the binding affinities of the sdAbs to SEB and a less-toxic vaccine immunogen, SEBv (L45R/Y89A/Y94A) were also consistent with binding to this epitope. A sandwich panning strategy was utilized to isolate sdAbs which bind a second epitope. This epitope differed from the initial one obtained or from that recognized by previously isolated anti-SEB sdAb A3. Using SEB-toxin spiked milk we demonstrated that these newly isolated sdAbs could be utilized in sandwich-assays with each other, A3, and with various monoclonal antibodies.

UI MeSH Term Description Entries
D007118 Immunoassay A technique using antibodies for identifying or quantifying a substance. Usually the substance being studied serves as antigen both in antibody production and in measurement of antibody by the test substance. Immunochromatographic Assay,Assay, Immunochromatographic,Assays, Immunochromatographic,Immunoassays,Immunochromatographic Assays
D002161 Camelids, New World Camelidae of the Americas. The extant species are those originating from South America and include alpacas, llamas, guanicos, and vicunas. Alpacas,Guanacos,Llamas,Lama glama,Lama glama guanicoe,Lama guanicoe,Lama pacos,Vicugna pacos,Vicugna vicugna,Vicunas,Alpaca,Camelid, New World,Guanaco,Llama,New World Camelid,New World Camelids,Vicuna
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D015374 Biosensing Techniques Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal. Bioprobes,Biosensors,Electrodes, Enzyme,Biosensing Technics,Bioprobe,Biosensing Technic,Biosensing Technique,Biosensor,Electrode, Enzyme,Enzyme Electrode,Enzyme Electrodes,Technic, Biosensing,Technics, Biosensing,Technique, Biosensing,Techniques, Biosensing
D018604 Epitope Mapping Methods used for studying the interactions of antibodies with specific regions of protein antigens. Important applications of epitope mapping are found within the area of immunochemistry. Epitope Mappings,Mapping, Epitope,Mappings, Epitope
D019544 Equipment Failure Analysis The evaluation of incidents involving the loss of function of a device. These evaluations are used for a variety of purposes such as to determine the failure rates, the causes of failures, costs of failures, and the reliability and maintainability of devices. Materials Failure Analysis,Prosthesis Failure Analysis,Analysis, Equipment Failure,Analysis, Materials Failure,Analysis, Prosthesis Failure,Analyses, Equipment Failure,Analyses, Materials Failure,Analyses, Prosthesis Failure,Equipment Failure Analyses,Failure Analyses, Equipment,Failure Analyses, Materials,Failure Analyses, Prosthesis,Failure Analysis, Equipment,Failure Analysis, Materials,Failure Analysis, Prosthesis,Materials Failure Analyses,Prosthesis Failure Analyses
D020349 Surface Plasmon Resonance A biosensing technique in which biomolecules capable of binding to specific analytes or ligands are first immobilized on one side of a metallic film. Light is then focused on the opposite side of the film to excite the surface plasmons, that is, the oscillations of free electrons propagating along the film's surface. The refractive index of light reflecting off this surface is measured. When the immobilized biomolecules are bound by their ligands, an alteration in surface plasmons on the opposite side of the film is created which is directly proportional to the change in bound, or adsorbed, mass. Binding is measured by changes in the refractive index. The technique is used to study biomolecular interactions, such as antigen-antibody binding. Plasmon Resonance, Surface,Plasmon Resonances, Surface,Resonance, Surface Plasmon,Resonances, Surface Plasmon,Surface Plasmon Resonances

Related Publications

Kendrick B Turner, and Dan Zabetakis, and Patricia Legler, and Ellen R Goldman, and George P Anderson
March 2011, The Journal of biological chemistry,
Kendrick B Turner, and Dan Zabetakis, and Patricia Legler, and Ellen R Goldman, and George P Anderson
January 1997, Journal of immunology (Baltimore, Md. : 1950),
Kendrick B Turner, and Dan Zabetakis, and Patricia Legler, and Ellen R Goldman, and George P Anderson
March 1992, Journal of medical microbiology,
Kendrick B Turner, and Dan Zabetakis, and Patricia Legler, and Ellen R Goldman, and George P Anderson
January 1969, Roczniki Panstwowego Zakladu Higieny,
Kendrick B Turner, and Dan Zabetakis, and Patricia Legler, and Ellen R Goldman, and George P Anderson
July 1992, FEMS microbiology immunology,
Kendrick B Turner, and Dan Zabetakis, and Patricia Legler, and Ellen R Goldman, and George P Anderson
January 1978, Journal of immunological methods,
Kendrick B Turner, and Dan Zabetakis, and Patricia Legler, and Ellen R Goldman, and George P Anderson
December 1988, Journal of medical microbiology,
Kendrick B Turner, and Dan Zabetakis, and Patricia Legler, and Ellen R Goldman, and George P Anderson
July 1970, The Journal of biological chemistry,
Kendrick B Turner, and Dan Zabetakis, and Patricia Legler, and Ellen R Goldman, and George P Anderson
November 2010, Recent patents on biotechnology,
Kendrick B Turner, and Dan Zabetakis, and Patricia Legler, and Ellen R Goldman, and George P Anderson
April 1969, Journal of bacteriology,
Copied contents to your clipboard!