New positive Ca2+-activated K+ channel gating modulators with selectivity for KCa3.1. 2014

Nichole Coleman, and Brandon M Brown, and Aida Oliván-Viguera, and Vikrant Singh, and Marilyn M Olmstead, and Marta Sofia Valero, and Ralf Köhler, and Heike Wulff
Department of Pharmacology (N.C., B.M.B., V.S., H.W.), School of Medicine, and Department of Chemistry (M.M.O.), University of California, Davis, California; Aragon Institute of Health Sciences, Instituto de Investigación Sanitaria, Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain (A.O.-V., R.K.); and Grupo de Investigación del Medio Ambiente del Centro de Estudios Superiores, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Spain (M.S.V.).

Small-conductance (KCa2) and intermediate-conductance (KCa3.1) calcium-activated K(+) channels are voltage-independent and share a common calcium/calmodulin-mediated gating mechanism. Existing positive gating modulators like EBIO, NS309, or SKA-31 activate both KCa2 and KCa3.1 channels with similar potency or, as in the case of CyPPA and NS13001, selectively activate KCa2.2 and KCa2.3 channels. We performed a structure-activity relationship (SAR) study with the aim of optimizing the benzothiazole pharmacophore of SKA-31 toward KCa3.1 selectivity. We identified SKA-111 (5-methylnaphtho[1,2-d]thiazol-2-amine), which displays 123-fold selectivity for KCa3.1 (EC50 111 ± 27 nM) over KCa2.3 (EC50 13.7 ± 6.9 μM), and SKA-121 (5-methylnaphtho[2,1-d]oxazol-2-amine), which displays 41-fold selectivity for KCa3.1 (EC50 109 nM ± 14 nM) over KCa2.3 (EC50 4.4 ± 1.6 μM). Both compounds are 200- to 400-fold selective over representative KV (KV1.3, KV2.1, KV3.1, and KV11.1), NaV (NaV1.2, NaV1.4, NaV1.5, and NaV1.7), as well as CaV1.2 channels. SKA-121 is a typical positive-gating modulator and shifts the calcium-concentration response curve of KCa3.1 to the left. In blood pressure telemetry experiments, SKA-121 (100 mg/kg i.p.) significantly lowered mean arterial blood pressure in normotensive and hypertensive wild-type but not in KCa3.1(-/-) mice. SKA-111, which was found in pharmacokinetic experiments to have a much longer half-life and to be much more brain penetrant than SKA-121, not only lowered blood pressure but also drastically reduced heart rate, presumably through cardiac and neuronal KCa2 activation when dosed at 100 mg/kg. In conclusion, with SKA-121, we generated a KCa3.1-specific positive gating modulator suitable for further exploring the therapeutical potential of KCa3.1 activation.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010080 Oxazoles Five-membered heterocyclic ring structures containing an oxygen in the 1-position and a nitrogen in the 3-position, in distinction from ISOXAZOLES where they are at the 1,2 positions. Oxazole,1,3-Oxazolium-5-Oxides,Munchnones,1,3 Oxazolium 5 Oxides
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Nichole Coleman, and Brandon M Brown, and Aida Oliván-Viguera, and Vikrant Singh, and Marilyn M Olmstead, and Marta Sofia Valero, and Ralf Köhler, and Heike Wulff
January 2019, Cancers,
Nichole Coleman, and Brandon M Brown, and Aida Oliván-Viguera, and Vikrant Singh, and Marilyn M Olmstead, and Marta Sofia Valero, and Ralf Köhler, and Heike Wulff
January 2018, Biological & pharmaceutical bulletin,
Nichole Coleman, and Brandon M Brown, and Aida Oliván-Viguera, and Vikrant Singh, and Marilyn M Olmstead, and Marta Sofia Valero, and Ralf Köhler, and Heike Wulff
January 2009, Cardiovascular & hematological agents in medicinal chemistry,
Nichole Coleman, and Brandon M Brown, and Aida Oliván-Viguera, and Vikrant Singh, and Marilyn M Olmstead, and Marta Sofia Valero, and Ralf Köhler, and Heike Wulff
January 2011, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Nichole Coleman, and Brandon M Brown, and Aida Oliván-Viguera, and Vikrant Singh, and Marilyn M Olmstead, and Marta Sofia Valero, and Ralf Köhler, and Heike Wulff
January 2018, Current neuropharmacology,
Nichole Coleman, and Brandon M Brown, and Aida Oliván-Viguera, and Vikrant Singh, and Marilyn M Olmstead, and Marta Sofia Valero, and Ralf Köhler, and Heike Wulff
January 2017, Nature,
Nichole Coleman, and Brandon M Brown, and Aida Oliván-Viguera, and Vikrant Singh, and Marilyn M Olmstead, and Marta Sofia Valero, and Ralf Köhler, and Heike Wulff
June 1999, Biophysical journal,
Nichole Coleman, and Brandon M Brown, and Aida Oliván-Viguera, and Vikrant Singh, and Marilyn M Olmstead, and Marta Sofia Valero, and Ralf Köhler, and Heike Wulff
April 2001, Nature,
Nichole Coleman, and Brandon M Brown, and Aida Oliván-Viguera, and Vikrant Singh, and Marilyn M Olmstead, and Marta Sofia Valero, and Ralf Köhler, and Heike Wulff
October 1990, The Journal of membrane biology,
Nichole Coleman, and Brandon M Brown, and Aida Oliván-Viguera, and Vikrant Singh, and Marilyn M Olmstead, and Marta Sofia Valero, and Ralf Köhler, and Heike Wulff
August 2011, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!