The protease inhibitor HAI-2, but not HAI-1, regulates matriptase activation and shedding through prostasin. 2014

Stine Friis, and Katiuchia Uzzun Sales, and Jeffrey Martin Schafer, and Lotte K Vogel, and Hiroaki Kataoka, and Thomas H Bugge
From the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, and the Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, 2200 Copenhagen N, Denmark.

The membrane-anchored serine proteases, matriptase and prostasin, and the membrane-anchored serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2, are critical effectors of epithelial development and postnatal epithelial homeostasis. Matriptase and prostasin form a reciprocal zymogen activation complex that results in the formation of active matriptase and prostasin that are targets for inhibition by HAI-1 and HAI-2. Conflicting data, however, have accumulated as to the existence of auxiliary functions for both HAI-1 and HAI-2 in regulating the intracellular trafficking and activation of matriptase. In this study, we, therefore, used genetically engineered mice to determine the effect of ablation of endogenous HAI-1 and endogenous HAI-2 on endogenous matriptase expression, subcellular localization, and activation in polarized intestinal epithelial cells. Whereas ablation of HAI-1 did not affect matriptase in epithelial cells of the small or large intestine, ablation of HAI-2 resulted in the loss of matriptase from both tissues. Gene silencing studies in intestinal Caco-2 cell monolayers revealed that this loss of cell-associated matriptase was mechanistically linked to accelerated activation and shedding of the protease caused by loss of prostasin regulation by HAI-2. Taken together, these data indicate that HAI-1 regulates the activity of activated matriptase, whereas HAI-2 has an essential role in regulating prostasin-dependent matriptase zymogen activation.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012697 Serine Endopeptidases Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis. Serine Endopeptidase,Endopeptidase, Serine,Endopeptidases, Serine
D015842 Serine Proteinase Inhibitors Exogenous or endogenous compounds which inhibit SERINE ENDOPEPTIDASES. Serine Endopeptidase Inhibitor,Serine Endopeptidase Inhibitors,Serine Protease Inhibitor,Serine Protease Inhibitors,Serine Proteinase Antagonist,Serine Proteinase Antagonists,Serine Proteinase Inhibitor,Serine Proteinase Inhibitors, Endogenous,Serine Proteinase Inhibitors, Exogenous,Serine Protease Inhibitors, Endogenous,Serine Protease Inhibitors, Exogenous,Antagonist, Serine Proteinase,Endopeptidase Inhibitor, Serine,Inhibitor, Serine Endopeptidase,Inhibitor, Serine Protease,Inhibitor, Serine Proteinase,Protease Inhibitor, Serine,Proteinase Antagonist, Serine,Proteinase Inhibitor, Serine

Related Publications

Stine Friis, and Katiuchia Uzzun Sales, and Jeffrey Martin Schafer, and Lotte K Vogel, and Hiroaki Kataoka, and Thomas H Bugge
August 2005, American journal of physiology. Cell physiology,
Stine Friis, and Katiuchia Uzzun Sales, and Jeffrey Martin Schafer, and Lotte K Vogel, and Hiroaki Kataoka, and Thomas H Bugge
March 2019, Human molecular genetics,
Stine Friis, and Katiuchia Uzzun Sales, and Jeffrey Martin Schafer, and Lotte K Vogel, and Hiroaki Kataoka, and Thomas H Bugge
January 2016, PloS one,
Stine Friis, and Katiuchia Uzzun Sales, and Jeffrey Martin Schafer, and Lotte K Vogel, and Hiroaki Kataoka, and Thomas H Bugge
May 2021, Human cell,
Stine Friis, and Katiuchia Uzzun Sales, and Jeffrey Martin Schafer, and Lotte K Vogel, and Hiroaki Kataoka, and Thomas H Bugge
January 2018, PloS one,
Stine Friis, and Katiuchia Uzzun Sales, and Jeffrey Martin Schafer, and Lotte K Vogel, and Hiroaki Kataoka, and Thomas H Bugge
January 2018, PloS one,
Stine Friis, and Katiuchia Uzzun Sales, and Jeffrey Martin Schafer, and Lotte K Vogel, and Hiroaki Kataoka, and Thomas H Bugge
July 2022, Genes & diseases,
Stine Friis, and Katiuchia Uzzun Sales, and Jeffrey Martin Schafer, and Lotte K Vogel, and Hiroaki Kataoka, and Thomas H Bugge
July 2006, American journal of physiology. Cell physiology,
Stine Friis, and Katiuchia Uzzun Sales, and Jeffrey Martin Schafer, and Lotte K Vogel, and Hiroaki Kataoka, and Thomas H Bugge
May 2020, The Biochemical journal,
Stine Friis, and Katiuchia Uzzun Sales, and Jeffrey Martin Schafer, and Lotte K Vogel, and Hiroaki Kataoka, and Thomas H Bugge
July 2023, Cancers,
Copied contents to your clipboard!