The acid-triggered entry pathway of Pseudomonas exotoxin A. 1989

Z T Farahbakhsh, and B J Wisnieski
Department of Microbiology, Molecular Biology Institute, University of California, Los Angeles 90024.

In this study we examined the pH requirements and reversibility of early events in the Pseudomonas toxin entry pathway, namely, membrane binding, insertion, and translocation. At pH 7.4, toxin binding to vesicles and insertion into the bilayer are very inefficient. Decreasing the pH greatly increases the efficiencies of these processes. Acid-treated toxin exhibits pH 7.4 binding and insertion levels. This indicates that hydrophobic regions that become exposed upon toxin acidficiation become buried again when the pH is raised to 7.4. In contrast, the change in toxin conformation that occurs upon membrane binding is irreversible. Returning samples to pH 7.4, incubation with excess toxin, or dilution with buffer up to 1000-fold leads to very little loss of bound toxin. Bound toxin exhibits an extremely high susceptibility to trypsin compared to free toxin (at both pH 4 and pH 7.4). At pH 4, membrane-associated toxin slowly proceeds to a trypsin-protected state; neutralization halts this process. At low pH, toxin was found to bind and insert into DMPC vesicles very efficiently at temperatures both above and below 23 degrees C, the lipid melting point. With fluid targets, the proportion of bound toxin that was photolabeled from within the bilayer peaked rapidly and then decreased with time. With frozen targets, the efficiency of photolabeling peaked but then remained fairly constant.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D005098 Exotoxins Toxins produced, especially by bacterial or fungal cells, and released into the culture medium or environment. Exotoxin
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000097668 Pseudomonas aeruginosa Exotoxin A An NAD-dependent ADP-ribosyltransferase that catalyzes the transfer of the ADP ribosyl moiety of oxidized NAD onto elongation factor 2 (EF-2) thus arresting protein synthesis. Commonly used as the toxin in immunotoxins. Exotoxin A, Pseudomonas,Exotoxin A, Pseudomonas aeruginosa,Recombinant Truncated Pseudomonas Exotoxin A, Form PE38QQR,Recombinant Truncated Pseudomonas Exotoxin A, Form PE40,ToxA protein, Pseudomonas aeruginosa,ETA, Pseudomonas,PE38QQR,PE40 toxin

Related Publications

Z T Farahbakhsh, and B J Wisnieski
May 1986, Infection and immunity,
Z T Farahbakhsh, and B J Wisnieski
November 1993, Journal of bacteriology,
Z T Farahbakhsh, and B J Wisnieski
January 1992, Targeted diagnosis and therapy,
Z T Farahbakhsh, and B J Wisnieski
June 1980, The New England journal of medicine,
Z T Farahbakhsh, and B J Wisnieski
January 1988, Methods in enzymology,
Z T Farahbakhsh, and B J Wisnieski
October 1982, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
Z T Farahbakhsh, and B J Wisnieski
January 1988, Cancer treatment and research,
Z T Farahbakhsh, and B J Wisnieski
February 1991, Seminars in cell biology,
Copied contents to your clipboard!