Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study. 2014

Jeerapa Sripetchdanond, and Chalermpol Leevailoj
Graduate student, Esthetic Restorative and Implant Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.

BACKGROUND Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. OBJECTIVE The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. METHODS Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. RESULTS No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (P<.001). The Ra of enamel specimens increased significantly after wear tests with monolithic zirconia, glass ceramic, and enamel (P<.05); however, no difference was found among these materials. CONCLUSIONS Within the limitations of this in vitro study, monolithic zirconia and composite resin resulted in less wear depth to human enamel compared with glass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing.

UI MeSH Term Description Entries
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D002516 Ceramics Products made by baking or firing nonmetallic minerals (clay and similar materials). In making dental restorations or parts of restorations the material is fused porcelain. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed & Boucher's Clinical Dental Terminology, 4th ed) Ceramic
D003188 Composite Resins Synthetic resins, containing an inert filler, that are widely used in dentistry. Composite Resin,Resin, Composite,Resins, Composite
D003743 Dental Enamel A hard thin translucent layer of calcified substance which envelops and protects the dentin of the crown of the tooth. It is the hardest substance in the body and is almost entirely composed of calcium salts. Under the microscope, it is composed of thin rods (enamel prisms) held together by cementing substance, and surrounded by an enamel sheath. (From Jablonski, Dictionary of Dentistry, 1992, p286) Enamel,Enamel Cuticle,Dental Enamels,Enamel, Dental,Enamels, Dental,Cuticle, Enamel,Cuticles, Enamel,Enamel Cuticles,Enamels
D003764 Dental Materials Materials used in the production of dental bases, restorations, impressions, prostheses, etc. Dental Material,Material, Dental,Materials, Dental
D003776 Dental Porcelain A type of porcelain used in dental restorations, either jacket crowns or inlays, artificial teeth, or metal-ceramic crowns. It is essentially a mixture of particles of feldspar and quartz, the feldspar melting first and providing a glass matrix for the quartz. Dental porcelain is produced by mixing ceramic powder (a mixture of quartz, kaolin, pigments, opacifiers, a suitable flux, and other substances) with distilled water. (From Jablonski's Dictionary of Dentistry, 1992) Porcelain,Porcelain, Dental,Dental Porcelains,Porcelains,Porcelains, Dental
D006244 Hardness The mechanical property of material that determines its resistance to force. HARDNESS TESTS measure this property. Hardnesses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property

Related Publications

Jeerapa Sripetchdanond, and Chalermpol Leevailoj
February 2019, The journal of advanced prosthodontics,
Jeerapa Sripetchdanond, and Chalermpol Leevailoj
July 1992, The Journal of prosthetic dentistry,
Jeerapa Sripetchdanond, and Chalermpol Leevailoj
October 2006, The Journal of prosthetic dentistry,
Jeerapa Sripetchdanond, and Chalermpol Leevailoj
October 2020, The Journal of prosthetic dentistry,
Jeerapa Sripetchdanond, and Chalermpol Leevailoj
January 2014, Operative dentistry,
Jeerapa Sripetchdanond, and Chalermpol Leevailoj
January 2022, Journal of Indian Prosthodontic Society,
Jeerapa Sripetchdanond, and Chalermpol Leevailoj
December 2014, Journal of prosthodontics : official journal of the American College of Prosthodontists,
Jeerapa Sripetchdanond, and Chalermpol Leevailoj
June 1990, Hiroshima Daigaku shigaku zasshi. The Journal of Hiroshima University Dental Society,
Jeerapa Sripetchdanond, and Chalermpol Leevailoj
January 2024, Clinical oral investigations,
Jeerapa Sripetchdanond, and Chalermpol Leevailoj
January 1975, Journal of dental research,
Copied contents to your clipboard!