Presence of two endo-beta-N-acetylglucosaminidases in human kidney. 1989

R DeGasperi, and Y T Li, and S C Li
Department of Biochemistry, Tulane University School of Medicine, New Orleans, Louisiana 70112.

We have isolated for the first time two kinds of endo-beta-N-acetylglucosaminidases (E-beta-GNases) simultaneously from human kidney. E-beta-GNase 1 was purified by water extraction, ammonium sulfate fractionation, and chromatography on Sephadex-G-200, DEAE-Sephadex, concanavalin A-Sepharose and Hypatite C columns. After the DEAE-Sephadex step, 107 units of E-beta-GNase 1 with a specific activity of 0.53 units/mg was obtained and after hydroxyapatite column, the enzyme recovery was 26 units with a specific activity of 10.4 units/mg. This enzyme hydrolyzed the high mannose-type asparaginylglycopeptide efficiently and had little activity toward the complex-type glycopeptide. This enzyme had an pH optimum at about 4.5 and was not inhibited by acetate ion. The Asn residue in a glycopeptide appeared not to be an important recognition site for E-beta-GNase 1 to express its activity because the acetylation or the dansylation of Asn residues as well as the elimination of Asn residue from the glycopeptide did not change the susceptibility of the oligosaccharide to E-beta-GNase 1. E-beta-GNase 2 was purified by water extraction, ammonium sulfate fractionation, and chromatography on Sephadex G-200, DEAE-Sephadex, concanavalin A-Sepharose, and Mono S columns. This enzyme was purified about 110-fold with 6.6% recovery. E-beta-GNase 2 was found to be a novel type of E-beta-GNase that hydrolyzed both the high mannose-type and the complex-type oligosaccharide with chitobiosyl group at the reducing end and without the Asn. E-beta-GNase 2 activity was found to be dependent on a L-aspartamido-beta-D-N-acetylglucosamine amidohydrolase (Asn-GNase) for the hydrolysis of asparaginylglycopeptide. Asn-GNase cleaved off the Asn residue from the glycopeptide, and the resulting oligosaccharide was hydrolyzed by E-beta-GNase 2. Because the acetylation or the dansylation of Asn residue in a glycopeptide rendered the glycopeptide resistant to Asn-GNase, the use of the modified asparaginylglycopeptide could not reveal the existence of E-beta-GNase 2 activity. The pH optimum of E-beta-GNase was found to be about 3.5. Like beta-hexosaminidases, this enzyme was inhibited by acetate ion, suggesting the recognition of GlcNAc moiety by this enzyme.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D006020 Glycopeptides Proteins which contain carbohydrate groups attached covalently to the polypeptide chain. The protein moiety is the predominant group with the carbohydrate making up only a small percentage of the total weight. Glycopeptide
D006596 Hexosaminidases Enzymes that catalyze the hydrolysis of N-acylhexosamine residues in N-acylhexosamides. Hexosaminidases also act on GLUCOSIDES; GALACTOSIDES; and several OLIGOSACCHARIDES. Galactosaminidases,Hexosaminidase,Galactosaminidase,Glucosaminidase,Glucosaminidases
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000118 Acetylglucosaminidase A beta-N-Acetylhexosaminidase that catalyzes the hydrolysis of terminal, non-reducing 2-acetamido-2-deoxy-beta-glucose residues in chitobiose and higher analogs as well as in glycoproteins. Has been used widely in structural studies on bacterial cell walls and in the study of diseases such as MUCOLIPIDOSIS and various inflammatory disorders of muscle and connective tissue. N-Acetyl-beta-D-glucosaminidase,Chitobiase,N,N-Diacetylchitobiase,N-Ac-beta-Glucosaminidase,NAGase,beta-D-Acetamido-2-Deoxyglucosidase,beta-D-N-acetylglucosaminidase,beta-N-Acetylglucosaminidase,N Ac beta Glucosaminidase,N Acetyl beta D glucosaminidase,N,N Diacetylchitobiase,beta D Acetamido 2 Deoxyglucosidase,beta D N acetylglucosaminidase,beta N Acetylglucosaminidase
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

R DeGasperi, and Y T Li, and S C Li
August 1981, Biochimica et biophysica acta,
R DeGasperi, and Y T Li, and S C Li
July 1991, Biochemistry international,
R DeGasperi, and Y T Li, and S C Li
January 1978, Methods in enzymology,
R DeGasperi, and Y T Li, and S C Li
September 1977, Biochemical and biophysical research communications,
R DeGasperi, and Y T Li, and S C Li
July 1991, Journal of biochemistry,
R DeGasperi, and Y T Li, and S C Li
October 1975, Biochemical and biophysical research communications,
R DeGasperi, and Y T Li, and S C Li
March 2005, Biochemical and biophysical research communications,
R DeGasperi, and Y T Li, and S C Li
January 2011, Trends in glycoscience and glycotechnology : TIGG,
R DeGasperi, and Y T Li, and S C Li
March 1996, Analytical biochemistry,
Copied contents to your clipboard!