Platelet-modified low density lipoprotein induces macrophage cholesterol accumulation and platelet activation. 1989

M Aviram, and B Fuhrman, and S Keidar, and I Maor, and M Rosenblat, and G Dankner, and G Brook
Lipid Research Unit, Rambam Medical Center, Haifa, Israel.

Low density lipoprotein (LDL), modified by chemical or biological means, was shown to induce macrophage cholesterol accumulation. The cholesterol and protein contents of LDL were decreased (by 10 and 15%, respectively) by incubation of the LDL for 2 h at 37 degrees C with normal washed platelet suspension or with platelet-conditioned medium; these decreases were not affected by platelet activation. The platelet-modified LDL caused a greater increase (by up to 15%) in collagen-induced, in vitro platelet aggregation than control LDL. Incubation of mouse peritoneal macrophages with platelet-modified LDL for 18 h at 37 degrees C resulted in an elevation of the macrophage cholesterol ester content (by 35-50%) as well as an increase in the cholesterol esterification rate (by 40-70%), compared with the effect of control LDL. Macrophage cholesterol synthesis, however, was significantly decreased (by 40-50%), compared with the effect of control LDL. The effect of LDL treated by platelet-conditioned medium was similar to that of platelet-modified LDL. The effect of platelet-modified LDL on macrophage cholesterol esterification was maximal within 24 h of incubation, and it was not significantly affected by inhibition of cholesterol synthesis. The platelet-modified LDL was taken up by the macrophages in a saturable fashion and its uptake was competitively inhibited by LDL, but not by acetylated LDL. We conclude that platelet-modified LDL interacts with the LDL receptor and induces macrophage cholesterol accumulation. Since the modified lipoprotein induces in vitro foam cell formation and platelet activation, platelet-modified LDL could be considered to be pro-atherogenic.

UI MeSH Term Description Entries
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008148 Lovastatin A fungal metabolite isolated from cultures of Aspergillus terreus. The compound is a potent anticholesteremic agent. It inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase (HYDROXYMETHYLGLUTARYL COA REDUCTASES), which is the rate-limiting enzyme in cholesterol biosynthesis. It also stimulates the production of low-density lipoprotein receptors in the liver. Lovastatin, 1 alpha-Isomer,Mevinolin,6-Methylcompactin,Lovastatin, (1 alpha(S*))-Isomer,MK-803,Mevacor,Monacolin K,1 alpha-Isomer Lovastatin,6 Methylcompactin,Lovastatin, 1 alpha Isomer,MK 803,MK803,alpha-Isomer Lovastatin, 1
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic

Related Publications

M Aviram, and B Fuhrman, and S Keidar, and I Maor, and M Rosenblat, and G Dankner, and G Brook
April 1989, Biochemical medicine and metabolic biology,
M Aviram, and B Fuhrman, and S Keidar, and I Maor, and M Rosenblat, and G Dankner, and G Brook
January 1992, The Journal of biological chemistry,
M Aviram, and B Fuhrman, and S Keidar, and I Maor, and M Rosenblat, and G Dankner, and G Brook
January 2006, Pathophysiology of haemostasis and thrombosis,
M Aviram, and B Fuhrman, and S Keidar, and I Maor, and M Rosenblat, and G Dankner, and G Brook
January 2003, Journal of atherosclerosis and thrombosis,
M Aviram, and B Fuhrman, and S Keidar, and I Maor, and M Rosenblat, and G Dankner, and G Brook
January 2008, The international journal of biochemistry & cell biology,
M Aviram, and B Fuhrman, and S Keidar, and I Maor, and M Rosenblat, and G Dankner, and G Brook
January 1983, Arteriosclerosis (Dallas, Tex.),
M Aviram, and B Fuhrman, and S Keidar, and I Maor, and M Rosenblat, and G Dankner, and G Brook
September 1989, Atherosclerosis,
M Aviram, and B Fuhrman, and S Keidar, and I Maor, and M Rosenblat, and G Dankner, and G Brook
April 1993, Atherosclerosis,
M Aviram, and B Fuhrman, and S Keidar, and I Maor, and M Rosenblat, and G Dankner, and G Brook
October 1988, The Journal of biological chemistry,
M Aviram, and B Fuhrman, and S Keidar, and I Maor, and M Rosenblat, and G Dankner, and G Brook
July 2012, Biochimica et biophysica acta,
Copied contents to your clipboard!