Protein mobility within secretory granules. 2014

Annita Ngatchou Weiss, and Mary A Bittner, and Ronald W Holz, and Daniel Axelrod
Department of Pharmacology, University of Michigan, Ann Arbor, Michigan. Electronic address: annweiss@umich.edu.

We investigated the basis for previous observations that fluorescent-labeled neuropeptide Y (NPY) is usually released within 200 ms after fusion, whereas labeled tissue plasminogen activator (tPA) is often discharged over many seconds. We found that tPA and NPY are endogenously expressed in small and different subpopulations of bovine chromaffin cells in culture. We measured the mobility of these proteins (tagged with fluorophore) within the lumen of individual secretory granules in living chromaffin cells, and related their mobilities to postfusion release kinetics. A method was developed that is not limited by standard optical resolution, in which a bright flash of strongly decaying evanescent field (∼64 nm exponential decay constant) produced by total internal reflection (TIR) selectively bleaches cerulean-labeled protein proximal to the glass coverslip within individual granules. Fluorescence recovery occurred as unbleached protein from distal regions within the 300 nm granule diffused into the bleached proximal regions. The fractional bleaching of tPA-cerulean (tPA-cer) was greater when subsequently probed with TIR excitation than with epifluorescence, indicating that tPA-cer mobility was low. The almost equal NPY-cer bleaching when probed with TIR and epifluorescence indicated that NPY-cer equilibrated within the 300 ms bleach pulse, and therefore had a greater mobility than tPA-cer. TIR-fluorescence recovery after photobleaching revealed a significant recovery of tPA-cer (but not NPY-cer) fluorescence within several hundred milliseconds after bleaching. Numerical simulations, which take into account bleach duration, granule diameter, and the limited number of fluorophores in a granule, are consistent with tPA-cer being 100% mobile, with a diffusion coefficient of 2 × 10(-10) cm(2)/s (∼1/3000 of that for a protein of similar size in aqueous solution). However, the low diffusive mobility of tPA cannot alone explain its slow postfusion release. In the accompanying study, we suggest that, additionally, tPA itself stabilizes the fusion pore with dimensions that restrict its own exit.

UI MeSH Term Description Entries
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D055571 Secretory Pathway A series of sequential intracellular steps involved in the transport of proteins (such as hormones and enzymes) from the site of synthesis to outside the cell. The pathway involves membrane-bound compartments through which the newly synthesized proteins undergo POST-TRANSLATIONAL MODIFICATIONS, packaging, storage, or transportation to the PLASMA MEMBRANE for secretion. Secretion Pathway,Secretion Process,Secretory Process,Secretion Pathways,Secretion Processes,Secretory Pathways,Secretory Processes
D019439 Chromaffin Cells Cells that store epinephrine secretory vesicles. During times of stress, the nervous system signals the vesicles to secrete their hormonal content. Their name derives from their ability to stain a brownish color with chromic salts. Characteristically, they are located in the adrenal medulla and paraganglia (PARAGANGLIA, CHROMAFFIN) of the sympathetic nervous system. Cell, Chromaffin,Cells, Chromaffin,Chromaffin Cell
D021381 Protein Transport The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport. Cellular Protein Targeting,Gated Protein Transport,Protein Targeting, Cellular,Protein Translocation,Transmembrane Protein Transport,Vesicular Protein Transport,Protein Localization Processes, Cellular,Protein Sorting,Protein Trafficking,Protein Transport, Gated,Protein Transport, Transmembrane,Protein Transport, Vesicular,Traffickings, Protein
D022142 Secretory Vesicles Vesicles derived from the GOLGI APPARATUS containing material to be released at the cell surface. SLMVs,Secretory Granules,Synaptic Like Microvesicles,Synaptic-Like Microvesicles,Zymogen Granules,Condensing Vacuoles,Condensing Vacuole,Granule, Secretory,Granule, Zymogen,Microvesicle, Synaptic-Like,Secretory Granule,Secretory Vesicle,Synaptic Like Microvesicle,Synaptic-Like Microvesicle,Vacuole, Condensing,Vesicle, Secretory,Zymogen Granule
D036681 Fluorescence Recovery After Photobleaching A method used to study the lateral movement of MEMBRANE PROTEINS and LIPIDS. A small area of a cell membrane is bleached by laser light and the amount of time necessary for unbleached fluorescent marker-tagged proteins to diffuse back into the bleached site is a measurement of the cell membrane's fluidity. The diffusion coefficient of a protein or lipid in the membrane can be calculated from the data. (From Segen, Current Med Talk, 1995). Fluorescence Photobleaching Recovery,FRAP (Fluorescence Recovery After Photobleaching),FRAPs (Fluorescence Recovery After Photobleaching)

Related Publications

Annita Ngatchou Weiss, and Mary A Bittner, and Ronald W Holz, and Daniel Axelrod
July 1994, The Journal of cell biology,
Annita Ngatchou Weiss, and Mary A Bittner, and Ronald W Holz, and Daniel Axelrod
June 2005, Journal of dental research,
Annita Ngatchou Weiss, and Mary A Bittner, and Ronald W Holz, and Daniel Axelrod
August 2002, Current opinion in cell biology,
Annita Ngatchou Weiss, and Mary A Bittner, and Ronald W Holz, and Daniel Axelrod
May 1993, BioEssays : news and reviews in molecular, cellular and developmental biology,
Annita Ngatchou Weiss, and Mary A Bittner, and Ronald W Holz, and Daniel Axelrod
October 1984, Experientia,
Annita Ngatchou Weiss, and Mary A Bittner, and Ronald W Holz, and Daniel Axelrod
February 2003, The Journal of biological chemistry,
Annita Ngatchou Weiss, and Mary A Bittner, and Ronald W Holz, and Daniel Axelrod
October 2002, Annals of the New York Academy of Sciences,
Annita Ngatchou Weiss, and Mary A Bittner, and Ronald W Holz, and Daniel Axelrod
December 2005, Platelets,
Annita Ngatchou Weiss, and Mary A Bittner, and Ronald W Holz, and Daniel Axelrod
June 2004, Molecular microbiology,
Annita Ngatchou Weiss, and Mary A Bittner, and Ronald W Holz, and Daniel Axelrod
September 1988, Biochemical and biophysical research communications,
Copied contents to your clipboard!