The pathway of electron transfer in NADH:Q oxidoreductase. 1989

R van Belzen, and S P Albracht
University of Amsterdam, Amsterdam, The Netherlands.

The pre-steady-state reduction by NADPH of NADH:Q oxidoreductase, as present in submitochondrial particles, has been further investigated with the rapid-mixing, rapid-freezing technique. It was found that trypsin treatment, that had previously been used to inactivate the transhydrogenase activity (Bakker, P.T.A. and Albracht, S.P.J. (1986) Biochim. Biophys. Acta 850, 413-422), considerably affected the stability at pH 6.2 of the NAD(P)H oxidation activity of submitochondrial particles. Use of the inhibitor butadione circumvented this problem, thus allowing a more careful investigation of the kinetics at pH 6.2. In the presence of the inhibitor rotenone it was found that 50% of the Fe-S clusters 3 and all of the Fe-S clusters 2 and 4 could be reduced by NADPH within 30 ms at pH 6.2. The remainder of the Fe-S clusters 3 and all of the Fe-S clusters 1 were reduced slowly (complete reduction only after more than 60 s). It was concluded that these latter Fe-S clusters play no role in the NADPH oxidation activity. In the absence of rotenone at pH 6.2 only 50% of the Fe-S clusters 2-4 could be reduced within 30 ms, while Fe-S cluster 1 was again not reduced. This difference was attributed to the fast reoxidation of part of the Fe-S clusters 2 and 4 by ubiquinone. At pH 8.0, where the NADPH oxidation activity is almost zero, 50% of the Fe-S clusters 2-4 could still be reduced by NADPH within 30 ms, while Fe-S cluster 1 was not reduced. The presence of rotenone had no effect on this reduction. From these observations it is concluded that the Fe-S clusters 2 and 4, which were rapidly reduced by NADPH and reoxidised by ubiquinone at pH 6.2, could not be reduced by NADPH at 8.0. This provides an explanation why NADH:Q oxidoreductase was not able to oxidise NADPH at pH 8.0, while part of the Fe-S clusters were still rapidly reduced. As a working hypothesis a dimeric structure for NADH:Q oxidoreductase is proposed. One protomer (B) contains FMN and Fe-S clusters 1-4 in equal amounts; the other protomer (A) is identical except for the absence of Fe-S cluster 1. NADH is able to react with both protomers, while NADPH only reacts with protomer A. A pH-dependent electron transfer from protomer A to protomer B is proposed, which would allow the reduction of Fe-S clusters 2 and 4 of protomer B by NADPH at pH 6.2, which is required for NADPH:Q oxidoreductase activity.

UI MeSH Term Description Entries
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010653 Phenylbutazone A butyl-diphenyl-pyrazolidinedione that has anti-inflammatory, antipyretic, and analgesic activities. It has been used in ANKYLOSING SPONDYLITIS; RHEUMATOID ARTHRITIS; and REACTIVE ARTHRITIS. Diphenylbutazone,Fenilbutazon,Butacote,Butadion,Butadione,Butapirazol,Butapyrazole,Butazolidin
D011808 Quinone Reductases NAD(P)H:(quinone acceptor) oxidoreductases. A family that includes three enzymes which are distinguished by their sensitivity to various inhibitors. EC 1.6.99.2 (NAD(P)H DEHYDROGENASE (QUINONE);) is a flavoprotein which reduces various quinones in the presence of NADH or NADPH and is inhibited by dicoumarol. EC 1.6.99.5 (NADH dehydrogenase (quinone)) requires NADH, is inhibited by AMP and 2,4-dinitrophenol but not by dicoumarol or folic acid derivatives. EC 1.6.99.6 (NADPH dehydrogenase (quinone)) requires NADPH and is inhibited by dicoumarol and folic acid derivatives but not by 2,4-dinitrophenol. Menaquinone Reductases,Reductases, Menaquinone,Reductases, Quinone
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013367 Submitochondrial Particles The various filaments, granules, tubules or other inclusions within mitochondria. Particle, Submitochondrial,Particles, Submitochondrial,Submitochondrial Particle

Related Publications

R van Belzen, and S P Albracht
June 1986, Journal of bioenergetics and biomembranes,
R van Belzen, and S P Albracht
July 1994, Biochimica et biophysica acta,
R van Belzen, and S P Albracht
March 2009, The Journal of biological chemistry,
R van Belzen, and S P Albracht
January 1990, Progress in clinical and biological research,
R van Belzen, and S P Albracht
October 2006, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!