Effect of glyoxal pretreatment on radiation-induced genetic damage in Drosophila melanogaster. 1989

B Mazar Barnett, and E R Muñoz
Departamento de Radiobiología, Comisión de Energía Atómica, Buenos Aires, Argentina.

The effects of glyoxal and of glyoxal pretreatments on radiation-induced genetic damage were investigated in Drosophila melanogaster mature sperm, by means of sex-linked recessive and dominant lethality, reciprocal translocation and chromosome loss tests. In addition, the possible mutagenic effect of glyoxal was assessed in postmeiotic cells up to 7 days after treatment. The results obtained show: (1) the frequencies of recessive lethals after glyoxal treatment were within control values, (2) no clastogenic effect of glyoxal was observed, (3) glyoxal pretreatment did not modify the frequency of recessive lethals induced by X-rays, (4) after pretreatment with glyoxal a consistent, though not significant, increase was seen in the frequency of reciprocal translocations in 3 replicate experiments, (5) the yield of dominant lethals and of complete and partial chromosome loss induced by radiation was significantly increased by pretreatments with glyoxal. It is suggested that the increase of the frequency of genetic endpoints resulting from chromosome breakage, when glyoxal was administered prior to irradiation, could be ascribed to: (a) a sensitizing action of glyoxal to the clastogenic effect of ionizing radiation; (b) the formation of reactive species by the interaction of glyoxal with radiation; and/or (c) interference of glyoxal with the normal handling of radiation-induced lesions in mature postmeiotic male cells.

UI MeSH Term Description Entries
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005804 Genes, Lethal Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability. Alleles, Lethal,Allele, Lethal,Gene, Lethal,Lethal Allele,Lethal Alleles,Lethal Gene,Lethal Genes
D006037 Glyoxal A 2-carbon aldehyde with carbonyl groups on both carbons. Ethanedial,Ethanedione
D000447 Aldehydes Organic compounds containing a carbonyl group in the form -CHO. Aldehyde
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B Mazar Barnett, and E R Muñoz
January 1979, Mutation research,
B Mazar Barnett, and E R Muñoz
April 1985, Mutation research,
B Mazar Barnett, and E R Muñoz
April 1978, Radiation research,
B Mazar Barnett, and E R Muñoz
January 1982, The Journal of heredity,
B Mazar Barnett, and E R Muñoz
January 1964, Nature,
B Mazar Barnett, and E R Muñoz
March 1994, Uchu Seibutsu Kagaku,
B Mazar Barnett, and E R Muñoz
July 1969, Genetics,
Copied contents to your clipboard!