Regulation of MHC gene expression during the differentiation of bone marrow-derived macrophages. 1989

J K Pullen, and E Eustis-Turf, and M J Myers, and L B Schook
Department of Microbiology and Immunology, Medical College of Virginia, Richmond 23284.

The ability of the macrophage to express class II MHC gene products appears to arise from both T-dependent and T-independent mechanisms. One mechanism by which macrophages express Ia-antigens in the absence of T-lymphocytes is postulated to be controlled by differentiation. By using a liquid bone marrow culture system, we have studied both class I and class II surface expression and mRNA accumulation during macrophage differentiation in vitro. The results demonstrated that Ia expression increased until 7 days in culture and then slowly declined. In contrast, class I expression appeared to steadily increase throughout the differentiation period. Northern blot analysis of RNA isolated from bone marrow-derived macrophages (BMDM) at various periods during culture, using E alpha, A alpha, and class I cDNA probes, correlated well with the results of Ia and H-2K surface expression. Further analysis demonstrated that the expression of Ia-antigens on BMDM was not the result of T-helper lymphocytes. This was determined by demonstrating (1) that bone marrow cultures were devoid of mature T-lymphocytes, (2) the absence of interferon (IFN)-gamma transcripts in both adherent and nonadherent populations of bone marrow cells, and (3) that the addition of anti-IFN-gamma monoclonal antibody (mAb) to the bone cultures did not alter the percentage of Ia-positive BMDM. Moreover, the addition of anti-tumor necrosis factor-alpha mAb to the bone marrow cultures had no effect on Ia expression by BMDM. Taken together, these results allow us to conclude that Ia expression by BMDM is probably not mediated via exogenous signals but rather results from an intrinsically controlled process.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000949 Histocompatibility Antigens Class II Large, transmembrane, non-covalently linked glycoproteins (alpha and beta). Both chains can be polymorphic although there is more structural variation in the beta chains. The class II antigens in humans are called HLA-D ANTIGENS and are coded by a gene on chromosome 6. In mice, two genes named IA and IE on chromosome 17 code for the H-2 antigens. The antigens are found on B-lymphocytes, macrophages, epidermal cells, and sperm and are thought to mediate the competence of and cellular cooperation in the immune response. The term IA antigens used to refer only to the proteins encoded by the IA genes in the mouse, but is now used as a generic term for any class II histocompatibility antigen. Antigens, Immune Response,Class II Antigens,Class II Histocompatibility Antigen,Class II Major Histocompatibility Antigen,Ia Antigens,Ia-Like Antigen,Ia-Like Antigens,Immune Response Antigens,Immune-Associated Antigens,Immune-Response-Associated Antigens,MHC Class II Molecule,MHC II Peptide,Class II Antigen,Class II Histocompatibility Antigens,Class II MHC Proteins,Class II Major Histocompatibility Antigens,Class II Major Histocompatibility Molecules,I-A Antigen,I-A-Antigen,IA Antigen,MHC Class II Molecules,MHC II Peptides,MHC-II Molecules,Antigen, Class II,Antigen, I-A,Antigen, IA,Antigen, Ia-Like,Antigens, Class II,Antigens, Ia,Antigens, Ia-Like,Antigens, Immune-Associated,Antigens, Immune-Response-Associated,I A Antigen,II Peptide, MHC,Ia Like Antigen,Ia Like Antigens,Immune Associated Antigens,Immune Response Associated Antigens,MHC II Molecules,Molecules, MHC-II,Peptide, MHC II,Peptides, MHC II
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha

Related Publications

J K Pullen, and E Eustis-Turf, and M J Myers, and L B Schook
June 1984, Transplantation,
J K Pullen, and E Eustis-Turf, and M J Myers, and L B Schook
August 1986, Journal of immunology (Baltimore, Md. : 1950),
J K Pullen, and E Eustis-Turf, and M J Myers, and L B Schook
January 2013, Cell & bioscience,
J K Pullen, and E Eustis-Turf, and M J Myers, and L B Schook
January 1987, Lymphokine research,
J K Pullen, and E Eustis-Turf, and M J Myers, and L B Schook
February 1993, Experimental hematology,
J K Pullen, and E Eustis-Turf, and M J Myers, and L B Schook
May 2017, Stem cells and development,
J K Pullen, and E Eustis-Turf, and M J Myers, and L B Schook
February 1991, Immunology,
J K Pullen, and E Eustis-Turf, and M J Myers, and L B Schook
April 1982, Journal of immunology (Baltimore, Md. : 1950),
J K Pullen, and E Eustis-Turf, and M J Myers, and L B Schook
March 1989, The Journal of experimental medicine,
J K Pullen, and E Eustis-Turf, and M J Myers, and L B Schook
March 2015, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!