Glutathione transferase catalyzed conjugation of benzo[a]pyrene 7,8-diol 9,10-epoxide with glutathione in human skin. 1989

B Jernström, and L Dock, and M Hall, and B Mannervik, and M K Tahir, and P L Grover
Department of Toxicology, Karolinska Institutet, Stockholm, Sweden.

Glutathione transferase (GST) activity towards racemic as well as the resolved enantiomers of 7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a] pyrene (anti-BPDE) and 1-chloro-2,4-dinitrobenzene (CDNB) was measured in post-microsomal supernatants (PMS) obtained from eight human skin samples. All preparations showed significant activity towards anti-BPDE and an almost exclusive preference for the more tumourigenic (+)-enantiomer. The specific activity towards (+)-anti-BPDE varied about five-fold between different PMS (range 147-781 pmol/min per mg protein) whereas the variation in specific activities towards CDNB was about two-fold (range 30-71 nmol/min per mg protein). The activities obtained with PMS at saturating concentrations of racemic anti-BPDE were about half of the activity towards the (+)-enantiomer indicating that (-)-anti-BPDE competitively inhibits conjugation of the (+)-form. No correlation was evident between the activities towards (+)-anti-BPDE and CDNB implying that different classes of GST isoenzymes participated in the two different reactions. Immunoblot analysis revealed the presence of Class Alpha and Pi isoenzymes whereas Class Mu isoenzymes seemed to be absent in the human skin samples analyzed. Quantitatively, the Class Pi isoenzyme(s) predominated in all skin samples and the amount of enzyme was about 1-3 micrograms GST Pi/mg PMS protein. The almost exclusive conjugation of (+)-anti-BPDE by PMS and previous results with GST Pi enzymes from human placenta suggested that this type of enzymes catalysed the conjugation reaction. The five-fold variation in specific activity towards (+)-anti-BPDE observed among the different PMS may be explained by individual differences in GST Pi content or by the presence of endogenous modifiers of GST activity towards the diol-epoxide.

UI MeSH Term Description Entries
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D004101 Dihydroxydihydrobenzopyrenes Benzopyrenes saturated in any two adjacent positions and substituted with two hydroxyl groups in any position. The majority of these compounds have carcinogenic or mutagenic activity. Benzopyrene Dihydrodiols,Dihydrobenzopyrene Diols,Dihydrodiolbenzopyrenes,Dihydrodiols, Benzopyrene,Diols, Dihydrobenzopyrene
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction
D015123 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide 7,8,8a,9a-Tetrahydrobenzo(10,11)chryseno (3,4-b)oxirene-7,8-diol. A benzopyrene derivative with carcinogenic and mutagenic activity. 7,8-Dihydroxy-9,10-Epoxy-7,8,9,10-Tetrahydrobenzo(a)pyrene,Benzo(a)pyrene 7,8-Dihydrodiol 9,10-Epoxide,7,8-BaP-9,10-Diol Epoxide,Anti-BaPDE,BPDE,Benzo(a)pyrene-7,8-diol 9,10-Epoxide,Anti BaPDE

Related Publications

B Jernström, and L Dock, and M Hall, and B Mannervik, and M K Tahir, and P L Grover
January 1996, Fundamental and applied toxicology : official journal of the Society of Toxicology,
B Jernström, and L Dock, and M Hall, and B Mannervik, and M K Tahir, and P L Grover
April 1994, Carcinogenesis,
B Jernström, and L Dock, and M Hall, and B Mannervik, and M K Tahir, and P L Grover
January 1989, Molecular carcinogenesis,
B Jernström, and L Dock, and M Hall, and B Mannervik, and M K Tahir, and P L Grover
April 1994, Chemico-biological interactions,
B Jernström, and L Dock, and M Hall, and B Mannervik, and M K Tahir, and P L Grover
March 1992, Cancer research,
B Jernström, and L Dock, and M Hall, and B Mannervik, and M K Tahir, and P L Grover
August 1984, Biophysical chemistry,
B Jernström, and L Dock, and M Hall, and B Mannervik, and M K Tahir, and P L Grover
March 2002, Molecular carcinogenesis,
B Jernström, and L Dock, and M Hall, and B Mannervik, and M K Tahir, and P L Grover
July 1977, Cancer letters,
B Jernström, and L Dock, and M Hall, and B Mannervik, and M K Tahir, and P L Grover
February 2000, Cancer research,
B Jernström, and L Dock, and M Hall, and B Mannervik, and M K Tahir, and P L Grover
June 1980, The Journal of biological chemistry,
Copied contents to your clipboard!