The structure of the O-polysaccharide from Pseudomonas aeruginosa IID 1009 (ATCC 27585). 1989

S Kaya, and Y Araki, and E Ito
Department of Chemistry, Faculty of Science, Hokkaido University.

Structural studies were carried out on the O-polysaccharide fraction obtained by mild acid treatment of the lipopolysaccharide from Pseudomonas aeruginosa IID 1009 (ATCC 27585). The O-polysaccharide was composed of L-rhamnose, N-acetyl-D-quinovosamine, and N-acetyl-L-galactosaminuronic acid in a molar ratio of 1:1:1. The results from analysis of fragments obtained by hydrogen fluoride hydrolysis of O-polysaccharide, together with data on methylation analysis and nuclear magnetic resonance spectroscopic analysis, led to the most likely structure of the repeating units of the polymer chain ----4)L-GalNAcA(alpha 1----3)D-QuiNAc(alpha 1----3)L-Rha(alpha 1----, in which about 70% of the rhamnose residues were O-acetylated at C-2. This structure coincides with that of the repeating unit of Lanyi 02 a,b polysaccharides.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011135 Polysaccharides, Bacterial Polysaccharides found in bacteria and in capsules thereof. Bacterial Polysaccharides
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate

Related Publications

S Kaya, and Y Araki, and E Ito
January 1983, Doklady Akademii nauk SSSR,
S Kaya, and Y Araki, and E Ito
August 1983, European journal of biochemistry,
S Kaya, and Y Araki, and E Ito
September 1991, Carbohydrate research,
S Kaya, and Y Araki, and E Ito
January 1965, Acta chemica Scandinavica,
Copied contents to your clipboard!