Phorbol ester binding to protein kinase C requires a cysteine-rich zinc-finger-like sequence. 1989

Y Ono, and T Fujii, and K Igarashi, and T Kuno, and C Tanaka, and U Kikkawa, and Y Nishizuka
Central Research Division, Takeda Chemical Industries, Osaka, Japan.

Protein kinase C normally has a tandem repeat of a characteristic cysteine-rich sequence in C1, the conserved region of the regulatory domain. These sequences resemble the DNA-binding zinc finger domain. For the gamma subspecies of rat brain protein kinase C, various deletion and point mutants in this domain were constructed, and the mutated proteins were expressed in Escherichia coli by using the T7 expression system. Radioactive phorbol 12,13-dibutyrate binding analysis indicated that a cysteine-rich zinc-finger-like sequence was essential for protein kinase C to bind phorbol ester and that one of two sequences was sufficient for the phorbol ester binding. Conserved region C2, another region in the regulatory domain, was apparently needed for the enzyme to require Ca2+ for phorbol ester binding activity.

UI MeSH Term Description Entries
D008667 Metalloproteins Proteins that have one or more tightly bound metal ions forming part of their structure. (Dorland, 28th ed) Metalloprotein
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

Y Ono, and T Fujii, and K Igarashi, and T Kuno, and C Tanaka, and U Kikkawa, and Y Nishizuka
October 1998, FEBS letters,
Y Ono, and T Fujii, and K Igarashi, and T Kuno, and C Tanaka, and U Kikkawa, and Y Nishizuka
August 1995, Molecular pharmacology,
Y Ono, and T Fujii, and K Igarashi, and T Kuno, and C Tanaka, and U Kikkawa, and Y Nishizuka
April 1991, Biochemical Society transactions,
Y Ono, and T Fujii, and K Igarashi, and T Kuno, and C Tanaka, and U Kikkawa, and Y Nishizuka
September 1999, Bioorganic & medicinal chemistry letters,
Y Ono, and T Fujii, and K Igarashi, and T Kuno, and C Tanaka, and U Kikkawa, and Y Nishizuka
September 1991, The Journal of biological chemistry,
Y Ono, and T Fujii, and K Igarashi, and T Kuno, and C Tanaka, and U Kikkawa, and Y Nishizuka
September 1995, The Journal of biological chemistry,
Y Ono, and T Fujii, and K Igarashi, and T Kuno, and C Tanaka, and U Kikkawa, and Y Nishizuka
June 1989, Biochemistry,
Y Ono, and T Fujii, and K Igarashi, and T Kuno, and C Tanaka, and U Kikkawa, and Y Nishizuka
October 1990, FEBS letters,
Y Ono, and T Fujii, and K Igarashi, and T Kuno, and C Tanaka, and U Kikkawa, and Y Nishizuka
April 1994, The Journal of biological chemistry,
Copied contents to your clipboard!