Toward a physical map of the Xq28 region in man: linking color vision, G6PD, and coagulation factor VIII genes to an X-Y homology region. 1989

B Arveiler, and A Vincent, and J L Mandel
Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Unité 184 de Biologie Moléculaire et de Génie Génétique de l'INSERM, Faculté de Médecine, Strasbourg, France.

We are using pulsed-field gel electrophoresis (PFGE) to establish a physical map of the human Xq28 region. We have identified a new probe 35.239 (DXYS64), localized in Xq28 by somatic hybrid mapping and belonging to a region of greater than 99% homology between the X and the Y chromosomes. PFGE data show that probes 35.239 and the polymorphic locus DXS115 (probe 767) map within a common 300-kb BssHII fragment. Both probes, in addition, hybridize to 575-kb BssHII and 590-kb ClaI fragments that contain the gene coding for coagulation factor VIII (F8C). The order F8C-DXS115-DXYS64 could be determined. Our results also provide evidence for linkage between the red/green color vision locus (RCP,GCP) and probes MD13 and T1.7 (GdX, DXS254) within a 750-kb ClaI fragment. Although the latter two probes are located within 50 kb of the 3' end of the G6PD gene, a G6PD cDNA probe did not hybridize to this fragment. G6PD, on the other hand, could be linked to F8C on a 290-kb BssHII fragment. All these data allow us to propose the order (RCP,GCP)-MD13-GdX-G6PD-F8C-DXS115-DXYS 64. We also linked probes St14 (DXS52), MN12 (DXS33), and DX13 (DXS15) to a member of a small family of X-linked dispersed sequences (DNF22S3) within a 575-kb BssHII fragment. The preliminary physical map presented here should be useful for further fine mapping of disease genes in the Xq28 region and should be helpful in orientating efforts toward the cloning of sequences close to the fragile X syndrome.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D008297 Male Males
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003117 Color Vision Defects Defects of color vision are mainly hereditary traits but can be secondary to acquired or developmental abnormalities in the CONES (RETINA). Severity of hereditary defects of color vision depends on the degree of mutation of the ROD OPSINS genes (on X CHROMOSOME and CHROMOSOME 3) that code the photopigments for red, green and blue. Achromatopsia,Color Blindness,Monochromatopsia,Color Blindness, Acquired,Color Blindness, Blue,Color Blindness, Green,Color Blindness, Inherited,Color Blindness, Red,Color Blindness, Red-Green,Color Vision Deficiency,Deutan Defect,Protan Defect,Tritan Defect,Achromatopsias,Acquired Color Blindness,Blindness, Color,Blue Color Blindness,Color Blindness, Red Green,Color Vision Defect,Color Vision Deficiencies,Defect, Color Vision,Defect, Deutan,Defects, Color Vision,Deficiencies, Color Vision,Deficiency, Color Vision,Green Color Blindness,Inherited Color Blindness,Red Color Blindness,Red-Green Color Blindness,Vision Defect, Color,Vision Defects, Color,Vision Deficiencies, Color,Vision Deficiency, Color
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D005169 Factor VIII Factor VIII of blood coagulation. Antihemophilic factor that is part of the factor VIII/von Willebrand factor complex. Factor VIII is produced in the liver and acts in the intrinsic pathway of blood coagulation. It serves as a cofactor in factor X activation and this action is markedly enhanced by small amounts of thrombin. Coagulation Factor VIII,Factor VIII Clotting Antigen,Factor VIII Coagulant Antigen,Factor VIII Procoagulant Activity,Thromboplastinogen,Blood Coagulation Factor VIII,F VIII-C,Factor 8,Factor 8 C,Factor Eight,Factor VIIIC,Hyate-C,Hyatt-C,F VIII C,Hyate C,HyateC,Hyatt C,HyattC
D005260 Female Females
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

B Arveiler, and A Vincent, and J L Mandel
February 1990, Genomics,
B Arveiler, and A Vincent, and J L Mandel
February 1989, Nucleic acids research,
B Arveiler, and A Vincent, and J L Mandel
December 1989, The EMBO journal,
B Arveiler, and A Vincent, and J L Mandel
January 1982, Thrombosis research,
B Arveiler, and A Vincent, and J L Mandel
May 2010, Haemophilia : the official journal of the World Federation of Hemophilia,
Copied contents to your clipboard!