Identification of two calcium currents in acutely dissociated neurons from the rat lateral geniculate nucleus. 1989

A Hernández-Cruz, and H C Pape
Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794.

1. Intracellular recording in the in vitro slice preparation and whole-cell, patch-clamp recording of acutely dissociated neurons from the rat lateral geniculate nucleus (LGN) were combined to study the Ca currents underlying their electrical responses. In slices from young animals (postnatal days 13-16), we found that dorsal LGN neurons have responses similar to those of adult preparations, including the presence of a low-threshold Ca spike (LTS). After enzymatic isolation of LGN neurons from the same animals, the firing properties appeared well preserved, as indicated by whole-cell, current-clamp recordings from dissociated multipolar cells (presumably geniculocortical relay neurons). 2. Two types of Ca currents were identified in voltage-clamped, isolated LGN neurons on the basis of their voltage dependency, pharmacology, and selectivity properties. These two currents resemble the low-voltage-activated (LVA) and high-voltage-activated (HVA) Ca channels found in rat sensory neurons (9). 3. The LVA current component required negative potentials (less than -80 mV) to deinactivate completely, started to activate around -60 mV and reached a plateau level around -25 mV. It peaked within 30-6 ms and decayed with a single time constant of approximately 24 ms at -20 mV. Its inactivation curve ranged from -100 to -40 mV, with a half-inactivation near -60 mV. The HVA current component could be isolated by holding the membrane potential positive to -60 mV, activated at potentials positive to -30 mV and peaked around +5 mV. The time-to-peak ranged from 30 to 6 ms in the voltage range from -30 to +35 mV and decayed very slowly with sustained depolarizing pulses (time constant ranged between 1,600 and 40 ms over the same voltage range). 4. The inactivation of LVA Ca current during depolarizing voltage steps was consistent with a voltage-dependent process. The recovery from inactivation after short (100 ms), inactivating prepulses displayed two exponential phases. The slower phase was predominant under conditions that induce large current flow through the membrane, suggesting a Ca-mediated mechanism. 5. The LVA current was preferentially blocked by 50 microM Ni2+, leaving the HVA currents almost unaltered. Fifty micromolars Cd2+, in contrast, seemed more effective in blocking the HVA component of the Ca current.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009532 Nickel A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA

Related Publications

A Hernández-Cruz, and H C Pape
October 1993, Journal of neurophysiology,
A Hernández-Cruz, and H C Pape
April 1997, Journal of neurophysiology,
A Hernández-Cruz, and H C Pape
January 1992, The European journal of neuroscience,
A Hernández-Cruz, and H C Pape
January 1992, The European journal of neuroscience,
A Hernández-Cruz, and H C Pape
July 1993, Journal of neurophysiology,
A Hernández-Cruz, and H C Pape
January 1996, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
Copied contents to your clipboard!