Complete physical map of the human immunoglobulin heavy chain constant region gene complex. 1989

M H Hofker, and M A Walter, and D W Cox
Research Institute, Hospital For Sick Children, Toronto, ON, Canada.

We have found by pulsed-field gel electrophoresis that the human immunoglobulin heavy chain constant region gene complex maps entirely to a 350-kilobase (kb) Mlu I fragment. The enzyme Eag I was used with pulsed-field gel electrophoresis alone and in double digests with Spe I to map the region. C gamma 3, of the C gamma 3-C gamma 1-C psi epsilon 1-C alpha 1 cluster, maps 60 kb to the 3' side of C delta; C gamma 2 of the C gamma 2-C gamma 4-C epsilon-C alpha 2 cluster maps 80 kb to the 3' side of C alpha 1, where C gamma 3 encodes the constant region of the immunoglobulin gamma 3 chain, C gamma 1 encodes the constant region of the immunoglobulin gamma 1 chain, etc. C psi gamma maps 35 kb to the 3' side of C alpha 1 and is in the same transcriptional orientation as the other genes. Although in the cloned DNA many CpG-containing restriction sites were identified, most of these were methylated in peripheral blood leukocytes. The sites that were not methylated were predominantly found in three clusters, or Hpa I tiny fragment islands. One was found on the 5' side of C mu; the other two lie 30 kb to the 3' side of each of the C alpha genes and could indicate the presence of regulatory sequences or genes. A region showing strong linkage disequilibrium between all C gamma genes spans at least 160 kb. The 70-kb C mu-C gamma 3 region, however, shows no linkage disequilibrium, possibly indicating a recombination hot spot. The immunoglobulin heavy chain constant region has been almost entirely cloned and mapped, and thus most rearrangements occurring in this region should be detectable.

UI MeSH Term Description Entries
D007127 Immunoglobulin Constant Regions The domains of the immunoglobulin molecules that are invariable in their amino acid sequence within any class or subclass of immunoglobulin. They confer biological as well as structural functions to immunoglobulins. One each on both the light chains and the heavy chains comprises the C-terminus half of the IMMUNOGLOBULIN FAB FRAGMENT and two or three of them make up the rest of the heavy chains (all of the IMMUNOGLOBULIN FC FRAGMENT) Ig Constant Regions,Immunoglobulin Constant Region,Constant Region, Ig,Constant Region, Immunoglobulin,Constant Regions, Ig,Constant Regions, Immunoglobulin,Regions, Ig Constant
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003360 Cosmids Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles. Cosmid
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004586 Electrophoresis An electrochemical process in which macromolecules or colloidal particles with a net electric charge migrate in a solution under the influence of an electric current. Electrophoreses
D005803 Genes, Immunoglobulin Genes encoding the different subunits of the IMMUNOGLOBULINS, for example the IMMUNOGLOBULIN LIGHT CHAIN GENES and the IMMUNOGLOBULIN HEAVY CHAIN GENES. The heavy and light immunoglobulin genes are present as gene segments in the germline cells. The completed genes are created when the segments are shuffled and assembled (B-LYMPHOCYTE GENE REARRANGEMENT) during B-LYMPHOCYTE maturation. The gene segments of the human light and heavy chain germline genes are symbolized V (variable), J (joining) and C (constant). The heavy chain germline genes have an additional segment D (diversity). Genes, Ig,Immunoglobulin Genes,Gene, Ig,Gene, Immunoglobulin,Ig Gene,Ig Genes,Immunoglobulin Gene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction

Related Publications

M H Hofker, and M A Walter, and D W Cox
September 2003, The Journal of biological chemistry,
M H Hofker, and M A Walter, and D W Cox
January 1989, Experimental and clinical immunogenetics,
M H Hofker, and M A Walter, and D W Cox
January 1991, Advances in experimental medicine and biology,
M H Hofker, and M A Walter, and D W Cox
July 1982, Cell,
M H Hofker, and M A Walter, and D W Cox
January 2007, Developmental and comparative immunology,
M H Hofker, and M A Walter, and D W Cox
February 1989, Nucleic acids research,
M H Hofker, and M A Walter, and D W Cox
April 1989, Nucleic acids research,
M H Hofker, and M A Walter, and D W Cox
August 1991, The Journal of experimental medicine,
M H Hofker, and M A Walter, and D W Cox
July 1997, Human genetics,
Copied contents to your clipboard!