Lipase maturation factor 1 (lmf1) is induced by endoplasmic reticulum stress through activating transcription factor 6α (Atf6α) signaling. 2014

Hui Z Mao, and Nicole Ehrhardt, and Candy Bedoya, and Javier A Gomez, and Diane DeZwaan-McCabe, and Imran N Mungrue, and Randal J Kaufman, and D Thomas Rutkowski, and Miklós Péterfy
From the Medical Genetics Research Institute and.

Lipase maturation factor 1 (Lmf1) is a critical determinant of plasma lipid metabolism, as demonstrated by severe hypertriglyceridemia associated with its mutations in mice and human subjects. Lmf1 is a chaperone localized to the endoplasmic reticulum (ER) and required for the post-translational maturation and activation of several vascular lipases. Despite its importance in plasma lipid homeostasis, the regulation of Lmf1 remains unexplored. We report here that Lmf1 expression is induced by ER stress in various cell lines and in tunicamycin (TM)-injected mice. Using genetic deficiencies in mouse embryonic fibroblasts and mouse liver, we identified the Atf6α arm of the unfolded protein response as being responsible for the up-regulation of Lmf1 in ER stress. Experiments with luciferase reporter constructs indicated that ER stress activates the Lmf1 promoter through a GC-rich DNA sequence 264 bp upstream of the transcriptional start site. We demonstrated that Atf6α is sufficient to induce the Lmf1 promoter in the absence of ER stress, and this effect is mediated by the TM-responsive cis-regulatory element. Conversely, Atf6α deficiency induced by genetic ablation or a dominant-negative form of Atf6α abolished TM stimulation of the Lmf1 promoter. In conclusion, our results indicate that Lmf1 is an unfolded protein response target gene, and Atf6α signaling is sufficient and necessary for activation of the Lmf1 promoter. Importantly, the induction of Lmf1 by ER stress appears to be a general phenomenon not restricted to lipase-expressing cells, which suggests a lipase-independent cellular role for this protein in ER homeostasis.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051702 Activating Transcription Factor 6 One of the BASIC-LEUCINE ZIPPER TRANSCRIPTION FACTORS that is synthesized as a membrane-bound protein in the ENDOPLASMIC RETICULUM. In response to endoplasmic reticulum stress it translocates to the GOLGI APPARATUS. It is activated by PROTEASES and then moves to the CELL NUCLEUS to regulate GENETIC TRANSCRIPTION of GENES involved in the unfolded protein response. ATF6 Transcription Factor,Transcription Factor, ATF6
D060888 Real-Time Polymerase Chain Reaction Methods used for detecting the amplified DNA products from the polymerase chain reaction as they accumulate instead of at the end of the reaction. Kinetic Polymerase Chain Reaction,Quantitative Real-Time PCR,Quantitative Real-Time Polymerase Chain Reaction,Real-Time PCR,PCR, Quantitative Real-Time,PCR, Real-Time,PCRs, Quantitative Real-Time,PCRs, Real-Time,Quantitative Real Time PCR,Quantitative Real Time Polymerase Chain Reaction,Quantitative Real-Time PCRs,Real Time PCR,Real Time Polymerase Chain Reaction,Real-Time PCR, Quantitative,Real-Time PCRs,Real-Time PCRs, Quantitative
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

Hui Z Mao, and Nicole Ehrhardt, and Candy Bedoya, and Javier A Gomez, and Diane DeZwaan-McCabe, and Imran N Mungrue, and Randal J Kaufman, and D Thomas Rutkowski, and Miklós Péterfy
November 2009, The Journal of biological chemistry,
Hui Z Mao, and Nicole Ehrhardt, and Candy Bedoya, and Javier A Gomez, and Diane DeZwaan-McCabe, and Imran N Mungrue, and Randal J Kaufman, and D Thomas Rutkowski, and Miklós Péterfy
August 2019, The Journal of biological chemistry,
Hui Z Mao, and Nicole Ehrhardt, and Candy Bedoya, and Javier A Gomez, and Diane DeZwaan-McCabe, and Imran N Mungrue, and Randal J Kaufman, and D Thomas Rutkowski, and Miklós Péterfy
January 2018, The Journal of allergy and clinical immunology,
Hui Z Mao, and Nicole Ehrhardt, and Candy Bedoya, and Javier A Gomez, and Diane DeZwaan-McCabe, and Imran N Mungrue, and Randal J Kaufman, and D Thomas Rutkowski, and Miklós Péterfy
July 2023, Virology journal,
Hui Z Mao, and Nicole Ehrhardt, and Candy Bedoya, and Javier A Gomez, and Diane DeZwaan-McCabe, and Imran N Mungrue, and Randal J Kaufman, and D Thomas Rutkowski, and Miklós Péterfy
May 2014, Molecular and cellular biology,
Hui Z Mao, and Nicole Ehrhardt, and Candy Bedoya, and Javier A Gomez, and Diane DeZwaan-McCabe, and Imran N Mungrue, and Randal J Kaufman, and D Thomas Rutkowski, and Miklós Péterfy
November 2018, The Journal of biological chemistry,
Hui Z Mao, and Nicole Ehrhardt, and Candy Bedoya, and Javier A Gomez, and Diane DeZwaan-McCabe, and Imran N Mungrue, and Randal J Kaufman, and D Thomas Rutkowski, and Miklós Péterfy
October 2018, The EMBO journal,
Hui Z Mao, and Nicole Ehrhardt, and Candy Bedoya, and Javier A Gomez, and Diane DeZwaan-McCabe, and Imran N Mungrue, and Randal J Kaufman, and D Thomas Rutkowski, and Miklós Péterfy
October 2020, Molecular and cellular endocrinology,
Hui Z Mao, and Nicole Ehrhardt, and Candy Bedoya, and Javier A Gomez, and Diane DeZwaan-McCabe, and Imran N Mungrue, and Randal J Kaufman, and D Thomas Rutkowski, and Miklós Péterfy
February 2018, Journal of neurotrauma,
Hui Z Mao, and Nicole Ehrhardt, and Candy Bedoya, and Javier A Gomez, and Diane DeZwaan-McCabe, and Imran N Mungrue, and Randal J Kaufman, and D Thomas Rutkowski, and Miklós Péterfy
February 2015, G3 (Bethesda, Md.),
Copied contents to your clipboard!