Disposition of 2',3'-dideoxyadenosine and 2',3'-dideoxyinosine in mice. 1989

S M el Dareer, and K F Tillery, and J R Kalin, and D L Hill
Southern Research Institute Birmingham, Alabama.

Mice were dosed with [3H]2',3'-dideoxyadenosine ([3H]ddA) in three procedures: intravenously, intraperitoneally, and interperitoneally following a dose of 2'-deoxycoformycin (dCF). For mice dosed intravenously, the content of radioactivity in plasma and tissue samples were essentially constant after 30 min. Of the radioactivity in plasma and brain samples collected between 30 min and 24 hr, more than 94% was present as 3H2O, indicating that most of the tritium from [3H]ddA had exchanged with water. No intact ddA was detected, and the deamination product, 2',3'-dideoxyinosine (ddI), was present only transiently. In the urine, the major radioactive material was [3H]ddI. Also detected were 3H2O and small amounts of [3H]hypoxanthine and [3H]ddA. Following intraperitoneal doses to mice, levels of radioactivity in plasma, liver, and kidney increased to a maximum by 15-30 min after dosing but dropped to essentially constant levels thereafter, again indicating that the tritium had exchanged with water. At 5, 15, and 30 min after dosing, ddI was the major radioactive component in plasma. Only small amounts of ddA were present. When dCF was administered 24 hr prior to intraperitoneal [3H]ddA, levels of radioactivity in plasma, liver, and kidney reached a maximum of 30 to 60 min after dosing and decreased to essentially constant levels thereafter. The dCF transiently inhibited the deamination of ddA to ddI, since, in plasma, [3H]ddA was the main radioactive component at 5 and 15 min after dosing. Comparison of HPLC assays based on radioactivity detection and UV absorbance showed that they were equivalent for measuring ddA and ddI in samples derived from dosed mice.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007274 Injections, Intraperitoneal Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall. Intraperitoneal Injections,Injection, Intraperitoneal,Intraperitoneal Injection
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D016048 Dideoxyadenosine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by a hydrogen. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is an inhibitor of HIV replication, acting as a chain-terminator of viral DNA by binding to reverse transcriptase. Its principal side effect is nephrotoxicity. In vivo, dideoxyadenosine is rapidly metabolized to DIDANOSINE (ddI) by enzymatic deamination; ddI is then converted to dideoxyinosine monophosphate and ultimately to dideoxyadenosine triphosphate, the putative active metabolite. 2',3'-Dideoxyadenosine,ddA (Antiviral),2',3' Dideoxyadenosine
D016049 Didanosine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by a hydrogen. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. Didanosine is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA by binding to reverse transcriptase; ddI is then metabolized to dideoxyadenosine triphosphate, its putative active metabolite. 2',3'-Dideoxyinosine,Dideoxyinosine,ddI (Antiviral),NSC-612049,Videx,2',3' Dideoxyinosine,NSC 612049,NSC612049

Related Publications

S M el Dareer, and K F Tillery, and J R Kalin, and D L Hill
September 1988, Journal of chromatography,
S M el Dareer, and K F Tillery, and J R Kalin, and D L Hill
January 1998, Nucleosides & nucleotides,
S M el Dareer, and K F Tillery, and J R Kalin, and D L Hill
May 1989, Biochemical pharmacology,
S M el Dareer, and K F Tillery, and J R Kalin, and D L Hill
May 1990, Clinical pharmacology and therapeutics,
S M el Dareer, and K F Tillery, and J R Kalin, and D L Hill
August 1992, Pharmaceutical research,
S M el Dareer, and K F Tillery, and J R Kalin, and D L Hill
August 1996, Journal of pharmaceutical sciences,
S M el Dareer, and K F Tillery, and J R Kalin, and D L Hill
January 1999, European journal of drug metabolism and pharmacokinetics,
S M el Dareer, and K F Tillery, and J R Kalin, and D L Hill
October 1996, Drug metabolism and disposition: the biological fate of chemicals,
Copied contents to your clipboard!