Red cell aplasia due to host type isohemagglutinins with exuberant red cell progenitor production of donor type in an ABO-mismatched allogeneic bone marrow transplant recipient. 1989

K J Cockerill, and J Lyding, and A R Zander
Division of Bone Marrow Transplantation, Pacific Presbyterian Medical Center, San Francisco, California.

ABO-mismatched bone marrow transplants have resulted in delayed red cell production in patients who have persistently elevated anti-ABO isohemagglutinin titers. We present a patient with chronic myelogenous leukemia who received an HLA-matched, ABO-incompatible bone marrow transplant from his sister. Post-transplant, he developed pure red cell aplasia with exuberant production of donor red cell precursors by in vitro BFU-E assay. Restriction fragment length polymorphism (RFLP) analysis of bone marrow, peripheral blood and BFU-E colonies demonstrated only donor type DNA post-transplant. However, the patient had persistently elevated isohemagglutinin titer and Ph1 chromosome-positive metaphases on chromosome analysis, indicating the presence of persistent host lymphocytes. With onset of acute graft vs. host disease (GVHD), the isohemagglutinin titer dropped, Ph1 chromosome-positive metaphases disappeared, and full hematopoietic recovery ensued. Longitudinal analysis of RFLP's, isohemagglutinin titers and chromosomes may be helpful in understanding the immunological interplay following allogeneic bone marrow transplantation.

UI MeSH Term Description Entries
D008297 Male Males
D010677 Philadelphia Chromosome An aberrant form of human CHROMOSOME 22 characterized by translocation of the distal end of chromosome 9 from 9q34, to the long arm of chromosome 22 at 22q11. It is present in the bone marrow cells of 80 to 90 per cent of patients with chronic myelocytic leukemia (LEUKEMIA, MYELOGENOUS, CHRONIC, BCR-ABL POSITIVE). Ph1 Chromosome,Ph 1 Chromosome,1 Chromosomes, Ph,Chromosome, Ph 1,Chromosome, Ph1,Chromosome, Philadelphia,Chromosomes, Ph 1,Chromosomes, Ph1,Ph 1 Chromosomes,Ph1 Chromosomes
D012010 Red-Cell Aplasia, Pure Suppression of erythropoiesis with little or no abnormality of leukocyte or platelet production. Aplasia Pure Red Cell,Erythrocyte Aplasia,Pure Red-Cell Aplasia,Aplasia, Erythrocyte,Aplasia, Pure Red-Cell,Aplasias, Erythrocyte,Erythrocyte Aplasias,Pure Red Cell Aplasia,Pure Red-Cell Aplasias,Red Cell Aplasia, Pure,Red-Cell Aplasias, Pure
D006086 Graft vs Host Disease The clinical entity characterized by anorexia, diarrhea, loss of hair, leukopenia, thrombocytopenia, growth retardation, and eventual death brought about by the GRAFT VS HOST REACTION. Graft-Versus-Host Disease,Homologous Wasting Disease,Runt Disease,Graft-vs-Host Disease,Disease, Graft-Versus-Host,Disease, Graft-vs-Host,Disease, Homologous Wasting,Disease, Runt,Diseases, Graft-Versus-Host,Diseases, Graft-vs-Host,Graft Versus Host Disease,Graft-Versus-Host Diseases,Graft-vs-Host Diseases
D006388 Hemagglutinins Agents that cause agglutination of red blood cells. They include antibodies, blood group antigens, lectins, autoimmune factors, bacterial, viral, or parasitic blood agglutinins, etc. Isohemagglutinins,Exohemagglutinins,Hemagglutinin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000017 ABO Blood-Group System The major human blood type system which depends on the presence or absence of two antigens A and B. Type O occurs when neither A nor B is present and AB when both are present. A and B are genetic factors that determine the presence of enzymes for the synthesis of certain glycoproteins mainly in the red cell membrane. ABH Blood Group,ABO Blood Group,ABO Factors,Blood Group H Type 1 Antigen,H Blood Group,H Blood Group System,ABO Blood Group System,Blood Group, ABH,Blood Group, ABO,Blood Group, H,Blood-Group System, ABO,Factors, ABO,System, ABO Blood-Group
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D014184 Transplantation, Homologous Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals. Transplantation, Allogeneic,Allogeneic Grafting,Allogeneic Transplantation,Allografting,Homografting,Homologous Transplantation,Grafting, Allogeneic
D015672 Erythroid Precursor Cells The cells in the erythroid series derived from MYELOID PROGENITOR CELLS or from the bi-potential MEGAKARYOCYTE-ERYTHROID PROGENITOR CELLS which eventually give rise to mature RED BLOOD CELLS. The erythroid progenitor cells develop in two phases: erythroid burst-forming units (BFU-E) followed by erythroid colony-forming units (CFU-E); BFU-E differentiate into CFU-E on stimulation by ERYTHROPOIETIN, and then further differentiate into ERYTHROBLASTS when stimulated by other factors. Burst-Forming Units, Erythroid,Colony-Forming Units, Erythroid,Erythroid Progenitor Cells,Erythropoietic Progenitor Cells,Erythropoietic Stem Cells,Progenitor Cells, Erythropoietic,Stem Cells, Erythroid,BFU-E,CFU-E,BFU E,BFU-Es,Burst Forming Units, Erythroid,Burst-Forming Unit, Erythroid,CFU E,CFU-Es,Cell, Erythroid Precursor,Cell, Erythroid Progenitor,Cell, Erythroid Stem,Cell, Erythropoietic Progenitor,Cell, Erythropoietic Stem,Cells, Erythroid Precursor,Cells, Erythroid Progenitor,Cells, Erythroid Stem,Cells, Erythropoietic Progenitor,Cells, Erythropoietic Stem,Colony Forming Units, Erythroid,Colony-Forming Unit, Erythroid,Erythroid Burst-Forming Unit,Erythroid Burst-Forming Units,Erythroid Colony-Forming Unit,Erythroid Colony-Forming Units,Erythroid Precursor Cell,Erythroid Progenitor Cell,Erythroid Stem Cell,Erythroid Stem Cells,Erythropoietic Progenitor Cell,Erythropoietic Stem Cell,Precursor Cell, Erythroid,Precursor Cells, Erythroid,Progenitor Cell, Erythroid,Progenitor Cell, Erythropoietic,Progenitor Cells, Erythroid,Stem Cell, Erythroid,Stem Cell, Erythropoietic,Stem Cells, Erythropoietic,Unit, Erythroid Burst-Forming,Unit, Erythroid Colony-Forming,Units, Erythroid Burst-Forming,Units, Erythroid Colony-Forming

Related Publications

K J Cockerill, and J Lyding, and A R Zander
July 1997, Internal medicine (Tokyo, Japan),
K J Cockerill, and J Lyding, and A R Zander
May 1996, Journal of clinical microbiology,
Copied contents to your clipboard!