The distribution of insertionally polymorphic endogenous retroviruses in breast cancer patients and cancer-free controls. 2014

Julia H Wildschutte, and Daniel Ram, and Ravi Subramanian, and Victoria L Stevens, and John M Coffin

BACKGROUND Integration of retroviral DNA into a germ cell can result in a provirus that is transmitted vertically to the host's offspring. In humans, such endogenous retroviruses (HERVs) comprise >8% of the genome. The HERV-K(HML-2) proviruses consist of ~90 elements related to mouse mammary tumor virus, which causes breast cancer in mice. A subset of HERV-K(HML-2) proviruses has some or all genes intact, and even encodes functional proteins, though a replication competent copy has yet to be observed. More than 10% of HML-2 proviruses are human-specific, having integrated subsequent to the Homo-Pan divergence, and, of these, 11 are currently known to be polymorphic in integration site with variable frequencies among individuals. Increased expression of the most recent HML-2 proviruses has been observed in tissues and cell lines from several types of cancer, including breast cancer, for which expression may provide a meaningful marker of the disease. RESULTS In this study, we performed a case-control analysis to investigate the possible relationship between the genome-wide presence of individual polymorphic HML-2 proviruses with the occurrence of breast cancer. For this purpose, we screened 50 genomic DNA samples from individuals diagnosed with breast cancer or without history of the disease (n = 25 per group) utilizing a combination of locus-specific PCR screening, in silico analysis of HML-2 content within the reference human genome sequence, and high-resolution genomic hybridization in semi-dried agarose. By implementing this strategy, we were able to analyze the distribution of both annotated and previously undescribed polymorphic HML-2 proviruses within our sample set, and to assess their possible association with disease outcome. CONCLUSIONS In a case-control analysis of 50 humans with regard to breast cancer diagnosis, we found no significant difference in the prevalence of proviruses between groups, suggesting common polymorphic HML-2 proviruses are not associated with breast cancer. Our findings indicate a higher level of putatively novel HML-2 sites within the population, providing support for additional recent insertion events, implying ongoing, yet rare, activities. These findings do not rule out either the possibility of involvement of such proviruses in a subset of breast cancers, or their possible utility as tissue-specific markers of disease.

UI MeSH Term Description Entries
D011533 Proviruses Duplex DNA sequences in eukaryotic chromosomes, corresponding to the genome of a virus, that are transmitted from one cell generation to the next without causing lysis of the host. Proviruses are often associated with neoplastic cell transformation and are key features of retrovirus biology. Provirus
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016022 Case-Control Studies Comparisons that start with the identification of persons with the disease or outcome of interest and a control (comparison, referent) group without the disease or outcome of interest. The relationship of an attribute is examined by comparing both groups with regard to the frequency or levels of outcome over time. Case-Base Studies,Case-Comparison Studies,Case-Referent Studies,Matched Case-Control Studies,Nested Case-Control Studies,Case Control Studies,Case-Compeer Studies,Case-Referrent Studies,Case Base Studies,Case Comparison Studies,Case Control Study,Case Referent Studies,Case Referrent Studies,Case-Comparison Study,Case-Control Studies, Matched,Case-Control Studies, Nested,Case-Control Study,Case-Control Study, Matched,Case-Control Study, Nested,Case-Referent Study,Case-Referrent Study,Matched Case Control Studies,Matched Case-Control Study,Nested Case Control Studies,Nested Case-Control Study,Studies, Case Control,Studies, Case-Base,Studies, Case-Comparison,Studies, Case-Compeer,Studies, Case-Control,Studies, Case-Referent,Studies, Case-Referrent,Studies, Matched Case-Control,Studies, Nested Case-Control,Study, Case Control,Study, Case-Comparison,Study, Case-Control,Study, Case-Referent,Study, Case-Referrent,Study, Matched Case-Control,Study, Nested Case-Control
D020077 Endogenous Retroviruses Retroviruses that have integrated into the germline (PROVIRUSES) that have lost infectious capability but retained the capability to transpose. ERV,ERVs,Endogenous Retrovirus,HERV,HERVs,Human Endogenous Retrovirus,Human Endogenous Retroviruses,Retroviruses, Endogenous,Endogenous Retrovirus, Human,Endogenous Retroviruses, Human,Retrovirus, Endogenous,Retrovirus, Human Endogenous,Retroviruses, Human Endogenous
D020079 Terminal Repeat Sequences Nucleotide sequences repeated on both the 5' and 3' ends of a sequence under consideration. For example, the hallmarks of a transposon are that it is flanked by inverted repeats on each end and the inverted repeats are flanked by direct repeats. The Delta element of Ty retrotransposons and LTRs (long terminal repeats) are examples of this concept. Delta Elements,Flanking Repeat Sequences,Inverted Terminal Repeat,Long Terminal Repeat,R Repetitive Sequence,Terminal Repeat,Delta Element,Element, Delta,Elements, Delta,Flanking Repeat Sequence,Long Terminal Repeats,R Repetitive Sequences,Repeat Sequence, Flanking,Repeat Sequence, Terminal,Repeat Sequences, Flanking,Repeat Sequences, Terminal,Repeat, Long Terminal,Repeat, Terminal,Repeats, Long Terminal,Repeats, Terminal,Repetitive Sequence, R,Repetitive Sequences, R,Sequence, Flanking Repeat,Sequence, R Repetitive,Sequence, Terminal Repeat,Sequences, Flanking Repeat,Sequences, R Repetitive,Sequences, Terminal Repeat,Terminal Repeat Sequence,Terminal Repeat, Long,Terminal Repeats,Terminal Repeats, Long

Related Publications

Julia H Wildschutte, and Daniel Ram, and Ravi Subramanian, and Victoria L Stevens, and John M Coffin
November 2004, AIDS research and human retroviruses,
Julia H Wildschutte, and Daniel Ram, and Ravi Subramanian, and Victoria L Stevens, and John M Coffin
October 2009, Journal of virology,
Julia H Wildschutte, and Daniel Ram, and Ravi Subramanian, and Victoria L Stevens, and John M Coffin
November 2008, Cellular and molecular life sciences : CMLS,
Julia H Wildschutte, and Daniel Ram, and Ravi Subramanian, and Victoria L Stevens, and John M Coffin
May 2003, Virus genes,
Julia H Wildschutte, and Daniel Ram, and Ravi Subramanian, and Victoria L Stevens, and John M Coffin
January 2010, Nature,
Julia H Wildschutte, and Daniel Ram, and Ravi Subramanian, and Victoria L Stevens, and John M Coffin
February 2008, Journal of virology,
Julia H Wildschutte, and Daniel Ram, and Ravi Subramanian, and Victoria L Stevens, and John M Coffin
June 2017, BMC genomics,
Julia H Wildschutte, and Daniel Ram, and Ravi Subramanian, and Victoria L Stevens, and John M Coffin
December 2016, Cancer biology & medicine,
Julia H Wildschutte, and Daniel Ram, and Ravi Subramanian, and Victoria L Stevens, and John M Coffin
February 2014, Journal of immunology (Baltimore, Md. : 1950),
Julia H Wildschutte, and Daniel Ram, and Ravi Subramanian, and Victoria L Stevens, and John M Coffin
September 2013, Experimental hematology & oncology,
Copied contents to your clipboard!