GTP-binding proteins as possible targets for protein kinase C action. 1989

R Sagi-Eisenberg

The alpha-subunits of two guanine nucleotide binding proteins Gi and transducin, as well as the beta-subunit of transducin, serve as substrates for phosphorylation by the Ca2+- and phospholipid-dependent protein kinase C (PKC). Phosphorylation of the alpha-subunit of transducin is strictly dependent on its conformation and it is only the inactive form that is subjected to phosphorylation by PKC. This review will focus on the proposition that G proteins may serve as cellular targets for modulatory actions of PKC.

UI MeSH Term Description Entries
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory

Related Publications

R Sagi-Eisenberg
October 1997, Nihon saikingaku zasshi. Japanese journal of bacteriology,
R Sagi-Eisenberg
January 1999, Progress in molecular and subcellular biology,
R Sagi-Eisenberg
January 1990, Advances in second messenger and phosphoprotein research,
R Sagi-Eisenberg
January 1995, Biochemical and biophysical research communications,
Copied contents to your clipboard!