Stimulation of 5-lipoxygenase activity under conditions which promote lipid peroxidation. 1989

D Riendeau, and D Denis, and L Y Choo, and D J Nathaniel
Merck Frosst Centre for Therapeutic Research, Dorval, Québec, Canada.

The characteristics of hydroperoxide activation of 5-lipoxygenase were examined in the high speed supernatant fraction prepared from rat polymorphonuclear leukocytes. Stimulation of 5-lipoxygenase activity by the 5-hydroperoxyeicosatetraenoic acid (5-HPETE) reaction product was strongly dependent on the presence of thiol compounds. Various reducing agents such as mercaptoethanol and glutathione (0.5-2 mM) inhibited the reaction and increased the concentrations of 5-HPETE (1-10 microM) necessary to achieve maximal arachidonic acid oxidation. The requirement for 5-HPETE was not specific and could be replaced by H2O2 (10 microM) but not by the 5-hydroxyeicosatetraenoic acid (5-HETE) analogue. Furthermore, gel filtration chromatography of the soluble extract from leukocytes resolved different fractions which can increase the hydroperoxide dependence or fully replace the stimulation by 5-HPETE. Maximal activity of the 5-HPETE-stimulated reaction required Ca2+ ions (0.2-1 mM) and ATP with the elimination of the HPETE requirement at high ATP concentrations (2-4 mM). In addition, NADPH (1-2 mM), FAD (1 mM), Fe2+ ions (20-100 microM) and chelated Fe3+ (0.1 mM-EDTA/0.1 mM-FeCl3) all markedly increased product formation by 5-lipoxygenase whereas NADH (1 mM) was inhibitory and Fe3+ (20-100 microM) alone had no effect on the reaction. The stimulation by Fe2+ ions and NADPH was also observed under various conditions which increase the hydroperoxide dependence such as pretreatment of the enzyme preparation with glutathione peroxidase or chemical reduction with 0.015% NaBH4. These results provide evidence for an hydroperoxide activation of 5-lipoxygenase which is not product-specific and is modulated by thiol levels and several soluble components of the leukocytes. They also indicate that stimulation of 5-lipoxygenase activity can contribute to increase lipid peroxidation in iron and nucleotide-promoted reactions.

UI MeSH Term Description Entries
D008623 Mercaptoethanol A water-soluble thiol derived from hydrogen sulfide and ethanol. It is used as a reducing agent for disulfide bonds and to protect sulfhydryl groups from oxidation. 2-ME,2-Mercaptoethanol,2 Mercaptoethanol
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005182 Flavin-Adenine Dinucleotide A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) FAD,Flavitan,Dinucleotide, Flavin-Adenine,Flavin Adenine Dinucleotide
D005290 Ferric Compounds Inorganic or organic compounds containing trivalent iron. Compounds, Ferric
D005296 Ferrous Compounds Inorganic or organic compounds that contain divalent iron. Compounds, Ferrous
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D006893 Hydroxyeicosatetraenoic Acids Eicosatetraenoic acids substituted in any position by one or more hydroxy groups. They are important intermediates in a series of biosynthetic processes leading from arachidonic acid to a number of biologically active compounds such as prostaglandins, thromboxanes, and leukotrienes. HETE,Acids, Hydroxyeicosatetraenoic

Related Publications

D Riendeau, and D Denis, and L Y Choo, and D J Nathaniel
April 2005, American journal of respiratory and critical care medicine,
D Riendeau, and D Denis, and L Y Choo, and D J Nathaniel
October 1981, Biulleten' eksperimental'noi biologii i meditsiny,
D Riendeau, and D Denis, and L Y Choo, and D J Nathaniel
January 2009, Biochimica et biophysica acta,
D Riendeau, and D Denis, and L Y Choo, and D J Nathaniel
January 1991, Ukrainskii biokhimicheskii zhurnal (1978),
D Riendeau, and D Denis, and L Y Choo, and D J Nathaniel
April 2000, Biochimica et biophysica acta,
D Riendeau, and D Denis, and L Y Choo, and D J Nathaniel
September 2020, Nature cell biology,
D Riendeau, and D Denis, and L Y Choo, and D J Nathaniel
March 1994, Fiziologicheskii zhurnal imeni I.M. Sechenova,
D Riendeau, and D Denis, and L Y Choo, and D J Nathaniel
April 1995, Free radical biology & medicine,
D Riendeau, and D Denis, and L Y Choo, and D J Nathaniel
January 1992, Archives of biochemistry and biophysics,
D Riendeau, and D Denis, and L Y Choo, and D J Nathaniel
November 1995, Prostaglandins, leukotrienes, and essential fatty acids,
Copied contents to your clipboard!