In vitro inhibition of mouse hepatic mixed-function oxidase enzymes by helenalin and alantolactone. 1989

D E Chapman, and D J Holbrook, and S G Chaney, and I H Hall, and K H Lee
Curriculum in Toxicology, University of North Carolina, Chapel Hill 27599.

The sesquiterpene lactones (STL) helenalin and alantolactone were effective in vitro inhibitors of the mouse hepatic microsomal mixed-function oxidase (MFO) enzymes, aminopyrine demethylase (APD), aniline hydroxylase (ANH) and 7-ethoxyresorufin deethylase (ERD). Helenalin and alantolactone concentrations of 0.5 mM produced a 50-60% inhibition of APD and ERD, and a 20-30% inhibition of ANH. An increase in substrate (aminopyrine) concentration from 0.5 to 25 mM decreased STL inhibition of APD by 12-32%. APD was also inhibited at low aminopyrine concentrations (0.5 mM) by the helenalin derivative 2,3,11,13-tetrahydrohelenalin (tetrahydrohelenalin). The STL produced type I binding spectra with oxidized microsomes; Ks values for helenalin and alantolactone were 161 and 9 microM respectively. These results suggest that STL inhibition of the MFO system results, in part, from STL binding to the substrate-binding site of cytochrome P-450. It has been reported that the irreversible alkylation of protein cysteinyl residues is responsible for STL inhibition of several different enzymes, and second-order rate constants for the reaction of helenalin and alantolactone with glutathione were 25.1 and 1.80 mM-1.hr-1 respectively. Tetrahydrohelenalin did not react with glutathione. However, the subsequent addition of 3.0 mM thiols, i.e. L-cysteine, N-acetylcysteine or glutathione, to STL-treated (0.5 mM) microsomes reversed helenalin and alantolactone inhibition of APD and ERD by 50-80%. The ability of thiols to reverse STL inhibition of APD was decreased 20-43% by the coincubation of STL and microsomes with an NADPH-generating system. In addition, established effects of sulfhydryl-reactive compounds on the MFO system, i.e. inhibition of NADPH-cytochrome c reductase and conversion of cytochrome P-450 to cytochrome P-420, were not observed after addition of helenalin (1.0 mM) or alantolactone (0.5 mM) to mouse hepatic microsomes. These results suggest that STL inhibition of MFO enzymes may not be dependent upon the reactivity of the STL towards sulfhydryl groups. Instead, we suggest that STL binding to the substrate-binding site of cytochrome P-450 and subsequent metabolism of the STL may contribute to inhibition of the MFO system.

UI MeSH Term Description Entries
D007783 Lactones Cyclic esters of hydroxy carboxylic acids, containing a 1-oxacycloalkan-2-one structure. Large cyclic lactones of over a dozen atoms are MACROLIDES. Lactone
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000633 Aminopyrine N-Demethylase Aminopyrine N Demethylase,Demethylase, Aminopyrine N,N Demethylase, Aminopyrine,N-Demethylase, Aminopyrine

Related Publications

D E Chapman, and D J Holbrook, and S G Chaney, and I H Hall, and K H Lee
August 1992, Journal of pharmacobio-dynamics,
D E Chapman, and D J Holbrook, and S G Chaney, and I H Hall, and K H Lee
January 1977, Indian journal of experimental biology,
D E Chapman, and D J Holbrook, and S G Chaney, and I H Hall, and K H Lee
November 1974, Biochemical pharmacology,
D E Chapman, and D J Holbrook, and S G Chaney, and I H Hall, and K H Lee
December 1985, Toxicology letters,
D E Chapman, and D J Holbrook, and S G Chaney, and I H Hall, and K H Lee
January 1979, Journal of environmental pathology and toxicology,
D E Chapman, and D J Holbrook, and S G Chaney, and I H Hall, and K H Lee
January 1979, Research communications in chemical pathology and pharmacology,
D E Chapman, and D J Holbrook, and S G Chaney, and I H Hall, and K H Lee
December 1975, Biochemical pharmacology,
D E Chapman, and D J Holbrook, and S G Chaney, and I H Hall, and K H Lee
April 1980, Biochemical pharmacology,
D E Chapman, and D J Holbrook, and S G Chaney, and I H Hall, and K H Lee
October 1976, Toxicology and applied pharmacology,
D E Chapman, and D J Holbrook, and S G Chaney, and I H Hall, and K H Lee
May 1970, Science (New York, N.Y.),
Copied contents to your clipboard!