Interaction of neurotransmitters with a phospholipid bilayer: a molecular dynamics study. 2014

Günther H Peters, and Mikkel Werge, and Maria Northved Elf-Lind, and Jesper J Madsen, and Gustavo F Velardez, and Peter Westh
Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark. Electronic address: ghp@kemi.dtu.dk.

We have performed a series of molecular dynamics simulations to study the interactions between the neurotransmitters (NTs) γ-aminobutyrate (GABA), glycine (GLY), acetylcholine (ACH) and glutamate (GLU) as well as the amidated/acetylated γ-aminobutyrate (GABA(neu)) and the osmolyte molecule glycerol (GOL) with a dipalmitoylphosphatidylcholine (DPPC) bilayer. In agreement with previously published experimental data, we found the lowest membrane affinity for the charged molecules and a moderate affinity for zwitterionic and polar molecules. The affinity can be ranked as follows: ACH-GLU<<GABA<GLY<<GABA(neu)<<GOL. The latter three penetrated the bilayer at most with the deepest location being close to the glycerol backbone of the phospholipids. Even at that position, these solutes were noticeably hydrated and carried ∼30-80% of the bulk water along. The mobility of hydration water at the solute is also affected by the penetration into the bilayer. Two time scales of exchanging water molecules could be determined. In the bulk phase, the hydration layer contains ∼20% slow exchanging water molecules which increases 2-3 times as the solutes entered the bilayer. Our results indicate that there is no intermediate exchange of slow moving water molecules from the solutes to the lipid atoms and vice versa. Instead, the exchange relies on the reservoir of unbounded ("free") water molecules in the interfacial bilayer region. Results from the equilibrium simulations are in good agreement with the results from umbrella sampling simulations, which were conducted for the four naturally occurring NTs. Free energy profiles for ACH and GLU show a minimum of ∼2-3 kJ/mol close to the bilayer interface, while for GABA and GLY, a minimum of respectively ∼2 kJ/mol and ∼5 kJ/mol is observed when these NTs are located in the vicinity of the lipid glycerol backbone. The most important interaction of NTs with the bilayer is the charged amino group of NTs with the lipid phosphate group.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D015060 1,2-Dipalmitoylphosphatidylcholine Synthetic phospholipid used in liposomes and lipid bilayers to study biological membranes. It is also a major constituent of PULMONARY SURFACTANTS. Dipalmitoyllecithin,1,2-Dihexadecyl-sn-Glycerophosphocholine,1,2-Dipalmitoyl-Glycerophosphocholine,Dipalmitoyl Phosphatidylcholine,Dipalmitoylglycerophosphocholine,Dipalmitoylphosphatidylcholine,1,2 Dihexadecyl sn Glycerophosphocholine,1,2 Dipalmitoyl Glycerophosphocholine,1,2 Dipalmitoylphosphatidylcholine,Phosphatidylcholine, Dipalmitoyl
D056004 Molecular Dynamics Simulation A computer simulation developed to study the motion of molecules over a period of time. Molecular Dynamics Simulations,Molecular Dynamics,Dynamic, Molecular,Dynamics Simulation, Molecular,Dynamics Simulations, Molecular,Dynamics, Molecular,Molecular Dynamic,Simulation, Molecular Dynamics,Simulations, Molecular Dynamics
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum

Related Publications

Günther H Peters, and Mikkel Werge, and Maria Northved Elf-Lind, and Jesper J Madsen, and Gustavo F Velardez, and Peter Westh
April 2004, Biophysical journal,
Günther H Peters, and Mikkel Werge, and Maria Northved Elf-Lind, and Jesper J Madsen, and Gustavo F Velardez, and Peter Westh
January 2022, Cryo letters,
Günther H Peters, and Mikkel Werge, and Maria Northved Elf-Lind, and Jesper J Madsen, and Gustavo F Velardez, and Peter Westh
April 1995, Journal of biomolecular structure & dynamics,
Günther H Peters, and Mikkel Werge, and Maria Northved Elf-Lind, and Jesper J Madsen, and Gustavo F Velardez, and Peter Westh
August 2006, The journal of physical chemistry. B,
Günther H Peters, and Mikkel Werge, and Maria Northved Elf-Lind, and Jesper J Madsen, and Gustavo F Velardez, and Peter Westh
August 2008, Biophysical journal,
Günther H Peters, and Mikkel Werge, and Maria Northved Elf-Lind, and Jesper J Madsen, and Gustavo F Velardez, and Peter Westh
May 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
Günther H Peters, and Mikkel Werge, and Maria Northved Elf-Lind, and Jesper J Madsen, and Gustavo F Velardez, and Peter Westh
June 2004, Journal of molecular modeling,
Günther H Peters, and Mikkel Werge, and Maria Northved Elf-Lind, and Jesper J Madsen, and Gustavo F Velardez, and Peter Westh
February 2001, Journal of biomolecular structure & dynamics,
Günther H Peters, and Mikkel Werge, and Maria Northved Elf-Lind, and Jesper J Madsen, and Gustavo F Velardez, and Peter Westh
October 2009, The journal of physical chemistry. B,
Günther H Peters, and Mikkel Werge, and Maria Northved Elf-Lind, and Jesper J Madsen, and Gustavo F Velardez, and Peter Westh
June 2002, Journal of biomolecular structure & dynamics,
Copied contents to your clipboard!