20(s)-ginsenoside Rg3 promotes apoptosis in human ovarian cancer HO-8910 cells through PI3K/Akt and XIAP pathways. 2014

Jia-He Wang, and Jian-Fei Nao, and Meng Zhang, and Ping He
Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China, cmuwjh@yeah.net.

Ovarian cancer is a serious tumor which represents a great threat to women's health. Recently, researchers had found that 20(s)-ginsenoside Rg3 could inhibit growth of several cancer cell lines; however, the mechanism is not fully understood so far. In the present study, we found that 20(s)-ginsenoside Rg3 reduced cell viability and induced apoptosis in a dose- and time-dependent manner in the human ovarian cancer cells HO-8910. The induction of apoptosis was accompanied by downregulation of phosphatidylinositol 3-kinase (PI3K)/Akt family proteins and inhibitor of apoptosis protein (IAP) family proteins. 20(s)-ginsenoside Rg3 treatment resulted in activation of caspase-3 and -9, which may partly explain the anti-cancer activity of 20(s)-ginsenoside Rg3. Taken together, our study for the first time suggests that 20(s)-ginsenoside Rg3 is able to enhance apoptosis of HO-8910 cells, at least in part, through downregulation of PI3K/Akt and IAP family proteins. Moreover, the triggering of caspase-3 and -9 activation mediated apoptotic induction. Our data indicate that 20(s)-ginsenoside Rg3 is an effective apoptosis-inducing natural compound in ovarian cancer cells and may have a role in future therapies for ovarian cancer.

UI MeSH Term Description Entries
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D051057 Proto-Oncogene Proteins c-akt Protein-serine-threonine kinases that contain PLECKSTRIN HOMOLOGY DOMAINS and are activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. They play a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells. akt Proto-Oncogene Protein,c-akt Protein,AKT1 Protein Kinase,AKT2 Protein Kinase,AKT3 Protein Kinase,Akt-alpha Protein,Akt-beta Protein,Akt-gamma Protein,Protein Kinase B,Protein Kinase B alpha,Protein Kinase B beta,Protein Kinase B gamma,Protein-Serine-Threonine Kinase (Rac),Proto-Oncogene Protein Akt,Proto-Oncogene Protein RAC,Proto-Oncogene Proteins c-akt1,Proto-Oncogene Proteins c-akt2,Proto-Oncogene Proteins c-akt3,RAC-PK Protein,Rac Protein Kinase,Rac-PK alpha Protein,Rac-PK beta Protein,Related to A and C-Protein,c-akt Proto-Oncogene Protein,Akt alpha Protein,Akt beta Protein,Akt gamma Protein,Akt, Proto-Oncogene Protein,Protein, akt Proto-Oncogene,Protein, c-akt Proto-Oncogene,Proteins c-akt1, Proto-Oncogene,Proteins c-akt2, Proto-Oncogene,Proteins c-akt3, Proto-Oncogene,Proto Oncogene Protein Akt,Proto Oncogene Protein RAC,Proto Oncogene Proteins c akt,Proto Oncogene Proteins c akt1,Proto Oncogene Proteins c akt2,Proto Oncogene Proteins c akt3,Proto-Oncogene Protein, akt,Proto-Oncogene Protein, c-akt,RAC PK Protein,RAC, Proto-Oncogene Protein,Rac PK alpha Protein,Rac PK beta Protein,Related to A and C Protein,akt Proto Oncogene Protein,alpha Protein, Rac-PK,c akt Proto Oncogene Protein,c-akt, Proto-Oncogene Proteins,c-akt1, Proto-Oncogene Proteins,c-akt2, Proto-Oncogene Proteins,c-akt3, Proto-Oncogene Proteins
D051636 X-Linked Inhibitor of Apoptosis Protein An inhibitor of apoptosis protein that is translated by a rare cap-independent mechanism. It blocks caspase-mediated cellular destruction by inhibiting CASPASE 3; CASPASE 7; and CASPASE 9. X-Linked IAP Protein,XIAP Protein,IAP Protein, X-Linked,X Linked IAP Protein,X Linked Inhibitor of Apoptosis Protein
D053148 Caspase 3 A short pro-domain caspase that plays an effector role in APOPTOSIS. It is activated by INITIATOR CASPASES such as CASPASE 9. Isoforms of this protein exist due to multiple alternative splicing of its MESSENGER RNA. CASP3,Apopain,Caspase-3,Pro-Caspase-3,Procaspase-3,Pro Caspase 3,Procaspase 3
D053453 Caspase 9 A long pro-domain caspase that contains a CASPASE RECRUITMENT DOMAIN in its pro-domain region. Caspase 9 is activated during cell stress by mitochondria-derived proapoptotic factors and by CARD SIGNALING ADAPTOR PROTEINS such as APOPTOTIC PROTEASE-ACTIVATING FACTOR 1. It activates APOPTOSIS by cleaving and activating EFFECTOR CASPASES. Apoptotic Protease Activating Factor 3,Caspase-9,ICE-LAP6 Protein,ICE-Like Apoptotic Protease 6,Pro-Caspase-9,Procaspase-9,ICE LAP6 Protein,ICE Like Apoptotic Protease 6,Pro Caspase 9,Procaspase 9

Related Publications

Jia-He Wang, and Jian-Fei Nao, and Meng Zhang, and Ping He
October 2014, Anti-cancer drugs,
Jia-He Wang, and Jian-Fei Nao, and Meng Zhang, and Ping He
February 2015, International journal of oncology,
Jia-He Wang, and Jian-Fei Nao, and Meng Zhang, and Ping He
January 2015, Drug design, development and therapy,
Jia-He Wang, and Jian-Fei Nao, and Meng Zhang, and Ping He
October 2019, Molecules (Basel, Switzerland),
Jia-He Wang, and Jian-Fei Nao, and Meng Zhang, and Ping He
January 2019, Drug design, development and therapy,
Jia-He Wang, and Jian-Fei Nao, and Meng Zhang, and Ping He
January 2024, Journal of ginseng research,
Jia-He Wang, and Jian-Fei Nao, and Meng Zhang, and Ping He
November 2011, Molecules and cells,
Jia-He Wang, and Jian-Fei Nao, and Meng Zhang, and Ping He
January 2018, Open life sciences,
Jia-He Wang, and Jian-Fei Nao, and Meng Zhang, and Ping He
January 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Jia-He Wang, and Jian-Fei Nao, and Meng Zhang, and Ping He
May 2019, European journal of pharmacology,
Copied contents to your clipboard!