Levocarnitine protects H9c2 rat cardiomyocytes from H2O2-induced mitochondrial dysfunction and apoptosis. 2014

Cui-Ying Mao, and Hai-Bin Lu, and Ning Kong, and Jia-Yu Li, and Miao Liu, and Chun-Yan Yang, and Ping Yang
1. Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, China;

BACKGROUND Although the protective effects of levocarnitine in patients with ischemic heart disease are related to the attenuation of oxidative stress injury, the exact mechanisms involved have yet to be fully understood. Our aim was to investigate the potential protective effects of levocarnitine pretreatment against oxidative stress in rat H9c2 cardiomyocytes. METHODS Cardiomyocytes were exposed to H2O2 to create an oxidative stress model. The cells were pretreated with 50, 100, or 200 μM levocarnitine for 1 hour before H2O2 exposure. RESULTS H2O2 exposure led to significant activation of oxidative stress in the cells, characterized by reduced viability, increased intracellular reactive oxygen species, lipid peroxidation, and reduced intracellular antioxidant activity. Mitochondrial dysfunction was also observed following H2O2 exposure, reflected by the loss of mitochondrial transmembrane potential and intracellular adenosine triphosphate. These pathophysiological processes led to cardiomyocyte apoptosis through activation of the intrinsic apoptotic pathway. More importantly, the levocarnitine pretreatment attenuated the H2O2-induced oxidative injury significantly, preserved mitochondrial function, and partially prevented cardiomyocyte apoptosis during the oxidative stress reaction. Western blotting analyses suggested that levocarnitine pretreatment increased plasma protein levels of Bcl-2, reduced Bax, and attenuated cytochrome C leakage from the mitochondria in the cells. CONCLUSIONS Our in vitro study indicated that levocarnitine pretreatment may protect cardiomyocytes from oxidative stress-related damage.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002331 Carnitine A constituent of STRIATED MUSCLE and LIVER. It is an amino acid derivative and an essential cofactor for fatty acid metabolism. Bicarnesine,L-Carnitine,Levocarnitine,Vitamin BT,L Carnitine
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative
D032383 Myocytes, Cardiac Striated muscle cells found in the heart. They are derived from cardiac myoblasts (MYOBLASTS, CARDIAC). Cardiomyocytes,Muscle Cells, Cardiac,Muscle Cells, Heart,Cardiac Muscle Cell,Cardiac Muscle Cells,Cardiac Myocyte,Cardiac Myocytes,Cardiomyocyte,Cell, Cardiac Muscle,Cell, Heart Muscle,Cells, Cardiac Muscle,Cells, Heart Muscle,Heart Muscle Cell,Heart Muscle Cells,Muscle Cell, Cardiac,Muscle Cell, Heart,Myocyte, Cardiac

Related Publications

Cui-Ying Mao, and Hai-Bin Lu, and Ning Kong, and Jia-Yu Li, and Miao Liu, and Chun-Yan Yang, and Ping Yang
June 2008, The FEBS journal,
Cui-Ying Mao, and Hai-Bin Lu, and Ning Kong, and Jia-Yu Li, and Miao Liu, and Chun-Yan Yang, and Ping Yang
February 2011, Cryobiology,
Cui-Ying Mao, and Hai-Bin Lu, and Ning Kong, and Jia-Yu Li, and Miao Liu, and Chun-Yan Yang, and Ping Yang
January 2016, PloS one,
Cui-Ying Mao, and Hai-Bin Lu, and Ning Kong, and Jia-Yu Li, and Miao Liu, and Chun-Yan Yang, and Ping Yang
February 2019, Journal of cardiovascular translational research,
Cui-Ying Mao, and Hai-Bin Lu, and Ning Kong, and Jia-Yu Li, and Miao Liu, and Chun-Yan Yang, and Ping Yang
March 2016, Oncotarget,
Cui-Ying Mao, and Hai-Bin Lu, and Ning Kong, and Jia-Yu Li, and Miao Liu, and Chun-Yan Yang, and Ping Yang
January 2019, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
Cui-Ying Mao, and Hai-Bin Lu, and Ning Kong, and Jia-Yu Li, and Miao Liu, and Chun-Yan Yang, and Ping Yang
August 2007, Biochemical and biophysical research communications,
Cui-Ying Mao, and Hai-Bin Lu, and Ning Kong, and Jia-Yu Li, and Miao Liu, and Chun-Yan Yang, and Ping Yang
June 2018, Herz,
Cui-Ying Mao, and Hai-Bin Lu, and Ning Kong, and Jia-Yu Li, and Miao Liu, and Chun-Yan Yang, and Ping Yang
January 2018, Oxidative medicine and cellular longevity,
Cui-Ying Mao, and Hai-Bin Lu, and Ning Kong, and Jia-Yu Li, and Miao Liu, and Chun-Yan Yang, and Ping Yang
January 2020, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!