Peptides and peptidomimetics as immunomodulators. 2014

Ameya S Gokhale, and Seetharama Satyanarayanajois
Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.

Peptides and peptidomimetics can function as immunomodulating agents by either blocking the immune response or stimulating the immune response to generate tolerance. Knowledge of B- or T-cell epitopes along with conformational constraints is important in the design of peptide-based immunomodulating agents. Work on the conformational aspects of peptides, synthesis and modified amino acid side chains have contributed to the development of a new generation of therapeutic agents for autoimmune diseases and cancer. The design of peptides/peptidomimetics for immunomodulation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, systemic lupus and HIV infection is reviewed. In cancer therapy, peptide epitopes are used in such a way that the body is trained to recognize and fight the cancer cells locally as well as systemically.

UI MeSH Term Description Entries
D007155 Immunologic Factors Biologically active substances whose activities affect or play a role in the functioning of the immune system. Biological Response Modifier,Biomodulator,Immune Factor,Immunological Factor,Immunomodulator,Immunomodulators,Biological Response Modifiers,Biomodulators,Factors, Immunologic,Immune Factors,Immunological Factors,Modifiers, Biological Response,Response Modifiers, Biological,Factor, Immune,Factor, Immunological,Factors, Immune,Factors, Immunological,Modifier, Biological Response,Response Modifier, Biological
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001327 Autoimmune Diseases Disorders that are characterized by the production of antibodies that react with host tissues or immune effector cells that are autoreactive to endogenous peptides. Autoimmune Disease,Disease, Autoimmune,Diseases, Autoimmune
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs
D057786 Peptidomimetics Compounds that are designed to mimic the 3D structure of a natural peptide or protein. Peptidomimetic
D018984 Epitopes, T-Lymphocyte Antigenic determinants recognized and bound by the T-cell receptor. Epitopes recognized by the T-cell receptor are often located in the inner, unexposed side of the antigen, and become accessible to the T-cell receptors after proteolytic processing of the antigen. T-Cell Epitopes,T-Lymphocyte Epitopes,T-Cell Epitope,T-Lymphocyte Epitope,Epitope, T-Cell,Epitope, T-Lymphocyte,Epitopes, T Lymphocyte,Epitopes, T-Cell,T Cell Epitope,T Cell Epitopes,T Lymphocyte Epitope,T Lymphocyte Epitopes
D018985 Epitopes, B-Lymphocyte Antigenic determinants recognized and bound by the B-cell receptor. Epitopes recognized by the B-cell receptor are located on the surface of the antigen. B-Cell Epitopes,B-Lymphocyte Epitopes,B-Cell Epitope,B-Lymphocyte Epitope,B Cell Epitope,B Cell Epitopes,B Lymphocyte Epitope,B Lymphocyte Epitopes,Epitope, B-Cell,Epitope, B-Lymphocyte,Epitopes, B Lymphocyte,Epitopes, B-Cell

Related Publications

Ameya S Gokhale, and Seetharama Satyanarayanajois
December 2008, Current opinion in chemical biology,
Ameya S Gokhale, and Seetharama Satyanarayanajois
August 1997, Current opinion in biotechnology,
Ameya S Gokhale, and Seetharama Satyanarayanajois
December 2023, Molecules (Basel, Switzerland),
Ameya S Gokhale, and Seetharama Satyanarayanajois
January 2022, Peptide science (Hoboken, N.J.),
Ameya S Gokhale, and Seetharama Satyanarayanajois
June 2017, Current opinion in structural biology,
Ameya S Gokhale, and Seetharama Satyanarayanajois
January 2017, Methods in molecular biology (Clifton, N.J.),
Ameya S Gokhale, and Seetharama Satyanarayanajois
January 2013, Chemical Society reviews,
Ameya S Gokhale, and Seetharama Satyanarayanajois
January 2019, Frontiers in nutrition,
Ameya S Gokhale, and Seetharama Satyanarayanajois
March 2010, Magyar onkologia,
Ameya S Gokhale, and Seetharama Satyanarayanajois
March 2016, Biophysical journal,
Copied contents to your clipboard!