Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. 1989

R S Lewis, and M D Cahalan
Department of Physiology and Biophysics, California College of Medicine, University of California, Irvine 92717.

A rapid rise in the level of cytosolic free calcium ([Ca2+]i) is believed to be one of several early triggering signals in the activation of T lymphocytes by antigen. Although Ca2+ release from intracellular stores and its contribution to Ca2+ signaling in many cell types is well documented, relatively little is known regarding the role and mechanism of Ca2+ entry across the plasma membrane. We have investigated mitogen-triggered Ca2+ signaling in individual cells of the human T-leukemia-derived line, Jurkat, using fura-2 imaging and patch-clamp recording techniques. Phytohemagglutinin (PHA), a mitogenic lectin, induces repetitive [Ca2+]i oscillations in these cells peaking at micromolar levels with a period of 90-120 s. The oscillations depend critically upon Ca2+ influx across the plasma membrane, as they are rapidly terminated by removal of extracellular Ca2+, addition of Ca(2+)-channel blockers such as Ni2+ or Cd2+, or membrane depolarization. Whole-cell and perforated-patch recording methods were combined with fura-2 measurements to identify the mitogen-activated Ca2+ conductance involved in this response. A small, highly selective Ca2+ conductance becomes activated spontaneously in whole-cell recordings and in response to PHA in perforated-patch experiments. This conductance has properties consistent with a role in T-cell activation, including activation by PHA, lack of voltage-dependent gating, inhibition by Ni2+ or Cd2+, and regulation by intracellular Ca2+. Moreover, a tight temporal correlation between oscillations of Ca2+ conductance and [Ca2+]i suggests a role for the membrane Ca2+ conductance in generating [Ca2+]i oscillations in activated T cells.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008934 Mitogens Substances that stimulate mitosis and lymphocyte transformation. They include not only substances associated with LECTINS, but also substances from streptococci (associated with streptolysin S) and from strains of alpha-toxin-producing staphylococci. (Stedman, 25th ed) Mitogen,Phytomitogen,Phytomitogens
D010835 Phytohemagglutinins Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture. Kidney Bean Lectin,Kidney Bean Lectins,Lectins, Kidney Bean,Phaseolus vulgaris Lectin,Phaseolus vulgaris Lectins,Phytohemagglutinin,Hemagglutinins, Plant,Lectin, Kidney Bean,Lectin, Phaseolus vulgaris,Lectins, Phaseolus vulgaris,Plant Hemagglutinins
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015458 Leukemia, T-Cell A malignant disease of the T-LYMPHOCYTES in the bone marrow, thymus, and/or blood. Leukemia, Lymphocytic, T-Cell,Lymphocytic Leukemia, T-Cell,T-Cell Leukemia,T-Lymphocytic Leukemia,Leukemia, Lymphocytic, T Cell,T Lymphocytic Leukemia,Leukemia, T Cell,Leukemia, T Lymphocytic,Leukemia, T-Cell Lymphocytic,Leukemia, T-Lymphocytic,Leukemias, T Lymphocytic,Leukemias, T-Cell,Leukemias, T-Cell Lymphocytic,Leukemias, T-Lymphocytic,Lymphocytic Leukemia, T,Lymphocytic Leukemia, T Cell,Lymphocytic Leukemias, T,Lymphocytic Leukemias, T-Cell,T Cell Leukemia,T Lymphocytic Leukemias,T-Cell Leukemias,T-Cell Lymphocytic Leukemia,T-Cell Lymphocytic Leukemias,T-Lymphocytic Leukemias

Related Publications

R S Lewis, and M D Cahalan
February 1990, FEBS letters,
R S Lewis, and M D Cahalan
January 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
R S Lewis, and M D Cahalan
December 1999, The American journal of physiology,
R S Lewis, and M D Cahalan
February 2011, Trends in biochemical sciences,
R S Lewis, and M D Cahalan
March 2000, Acta obstetricia et gynecologica Scandinavica,
R S Lewis, and M D Cahalan
January 1988, Annals of the New York Academy of Sciences,
R S Lewis, and M D Cahalan
May 1991, Biochemical and biophysical research communications,
Copied contents to your clipboard!