Processing of the 5'-UTR and existence of protein factors that regulate translation of tobacco chloroplast psbN mRNA. 2014

Hiroshi Kuroda, and Masahiro Sugiura
Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho-ku, Nagoya, 467-8501, Japan, po0g86bq@okayama-u.ac.jp.

The chloroplast psbB operon includes five genes encoding photosystem II and cytochrome b 6 /f complex components. The psbN gene is located on the opposite strand. PsbN is localized in the thylakoid and is present even in the dark, although its level increases upon illumination and then decreases. However, the translation mechanism of the psbN mRNA remains unclear. Using an in vitro translation system from tobacco chloroplasts and a green fluorescent protein as a reporter protein, we show that translation occurs from a tobacco primary psbN 5'-UTR of 47 nucleotides (nt). Unlike many other chloroplast 5'-UTRs, the psbN 5'-UTR has two processing sites, at -39 and -24 upstream from the initiation site. Processing at -39 enhanced the translation rate fivefold. In contrast, processing at -24 did not affect the translation rate. These observations suggest that the two distinct processing events regulate, at least in part, the level of PsbN during development. The psbN 5'-UTR has no Shine-Dalgarno (SD)-like sequence. In vitro translation assays with excess amounts of the psbN 5'-UTR or with deleted psbN 5'-UTR sequences demonstrated that protein factors are required for translation and that their binding site is an 18 nt sequence in the 5'-UTR. Mobility shift assays using 10 other chloroplast 5'-UTRs suggested that common or similar proteins are involved in translation of a set of mRNAs lacking SD-like sequences.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014026 Nicotiana A plant genus of the family SOLANACEAE. Members contain NICOTINE and other biologically active chemicals; the dried leaves of Nicotiana tabacum are used for SMOKING. Tobacco Plant,Nicotiana tabacum,Plant, Tobacco,Plants, Tobacco,Tobacco Plants
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations
D045332 Photosystem II Protein Complex A large multisubunit protein complex found in the THYLAKOID MEMBRANE. It uses light energy derived from LIGHT-HARVESTING PROTEIN COMPLEXES to catalyze the splitting of WATER into DIOXYGEN and of reducing equivalents of HYDROGEN. Chloroplast Reaction Center Protein D1,D1 Photosystem II Protein, Plant,Light-Induced D1 Protein, Photosystem II,Oxygen Evolving Enzyme,PRCP II D2 Protein,Photosystem II,Photosystem II Reaction Center,Photosystem II Reaction Center Complex D1 Protein,Photosystem II Reaction Center Complex D2 Protein,RCII-D1 Protein,Water Oxidase,Water-Splitting Enzyme of Photosynthesis,Enzyme, Oxygen Evolving,Evolving Enzyme, Oxygen,Light Induced D1 Protein, Photosystem II,Oxidase, Water,Photosynthesis Water-Splitting Enzyme,Water Splitting Enzyme of Photosynthesis

Related Publications

Hiroshi Kuroda, and Masahiro Sugiura
April 2003, Trends in biochemical sciences,
Hiroshi Kuroda, and Masahiro Sugiura
February 2020, RNA (New York, N.Y.),
Hiroshi Kuroda, and Masahiro Sugiura
February 2020, RNA (New York, N.Y.),
Hiroshi Kuroda, and Masahiro Sugiura
November 2020, Methods (San Diego, Calif.),
Hiroshi Kuroda, and Masahiro Sugiura
January 2019, Advances in experimental medicine and biology,
Hiroshi Kuroda, and Masahiro Sugiura
July 2020, Biochemical and biophysical research communications,
Hiroshi Kuroda, and Masahiro Sugiura
April 1995, Molecular & general genetics : MGG,
Copied contents to your clipboard!