2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. 2014

Dongsheng Zhang, and Juan Li, and Fengzhen Wang, and Jun Hu, and Shuwei Wang, and Yueming Sun
Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China; The First School of Clinical Medicine, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.

Cancer cells are characterized by altered glucose metabolism known as the Warburg effect in which aerobic glycolysis is increased. Glucose is converted to lactate even under sufficient oxygen tension. Interfering with this process may be a potential effective strategy to cause cancer cell death because these cells rely heavily on glucose metabolism for survival and proliferation. 2-Deoxy-D-glucose (2DG), a glucose analog, targets glucose metabolism to deplete cancer cells of energy. In addition, 2DG increases oxidative stress, inhibits N-linked glycosylation, and induces autophagy. It can efficiently slow cell growth and potently facilitate apoptosis in specific cancer cells. Although 2DG itself has limited therapeutic effect in many types of cancers, it may be combined with other therapeutic agents or radiotherapy to exhibit a synergistic anticancer effect. In this review, we describe the Warburg effect and discuss 2DG and its underlying mechanisms and potential application for cancer treatment.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D058990 Molecular Targeted Therapy Treatments with drugs which interact with or block synthesis of specific cellular components characteristic of the individual's disease in order to stop or interrupt the specific biochemical dysfunction involved in progression of the disease. Targeted Molecular Therapy,Molecular Targeted Therapies,Molecular Therapy, Targeted,Targeted Molecular Therapies,Targeted Therapy, Molecular,Therapy, Molecular Targeted,Therapy, Targeted Molecular
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

Dongsheng Zhang, and Juan Li, and Fengzhen Wang, and Jun Hu, and Shuwei Wang, and Yueming Sun
June 2009, Future oncology (London, England),
Dongsheng Zhang, and Juan Li, and Fengzhen Wang, and Jun Hu, and Shuwei Wang, and Yueming Sun
January 1967, Archivum immunologiae et therapiae experimentalis,
Dongsheng Zhang, and Juan Li, and Fengzhen Wang, and Jun Hu, and Shuwei Wang, and Yueming Sun
February 2003, Kaku igaku. The Japanese journal of nuclear medicine,
Dongsheng Zhang, and Juan Li, and Fengzhen Wang, and Jun Hu, and Shuwei Wang, and Yueming Sun
January 2015, Frontiers in plant science,
Dongsheng Zhang, and Juan Li, and Fengzhen Wang, and Jun Hu, and Shuwei Wang, and Yueming Sun
January 2003, Breast cancer research : BCR,
Dongsheng Zhang, and Juan Li, and Fengzhen Wang, and Jun Hu, and Shuwei Wang, and Yueming Sun
June 1978, European journal of biochemistry,
Dongsheng Zhang, and Juan Li, and Fengzhen Wang, and Jun Hu, and Shuwei Wang, and Yueming Sun
January 2008, Medical hypotheses,
Dongsheng Zhang, and Juan Li, and Fengzhen Wang, and Jun Hu, and Shuwei Wang, and Yueming Sun
May 1972, Biochimica et biophysica acta,
Dongsheng Zhang, and Juan Li, and Fengzhen Wang, and Jun Hu, and Shuwei Wang, and Yueming Sun
February 1972, Biochimica et biophysica acta,
Dongsheng Zhang, and Juan Li, and Fengzhen Wang, and Jun Hu, and Shuwei Wang, and Yueming Sun
June 2012, Journal of breast cancer,
Copied contents to your clipboard!