Split tolerance in nude mice transplanted with 2'-deoxyguanosine-treated allogeneic thymus lobes. 1989

G Suzuki, and T Moriyama, and Y Takeuchi, and Y Kawase, and S Habu
Division of Radiation Health, National Institute of Radiological Sciences, Chiba, Japan.

To elucidate the acquisition of self tolerance in the thymus, full-allogeneic thymic chimeras were constructed. Athymic C3H and BALB/c nude mice were reconstituted with the thymic lobes of BALB/c and B10.BR fetuses, respectively, that were organ cultured for 5 days in the presence of 2'-deoxyguanosine. T cells in these chimeras were tolerized to the host MHC in both MLR and CTL assays. In contrast, T cells in the chimeras exhibited split tolerance for the thymic MHC haplotype. CTL specific for class I MHC of the thymic haplotype were generated not only from the peripheral T cells of the chimeras but also from thymocytes re-populated in the engrafted thymic lobes. However, T cells in these chimeras responded poorly to the class II MHC of the thymic haplotype in a standard MLR assay. In a syngeneic MLR culture upon stimulation with enriched APC of the thymic haplotype, only 22 to 48% of the responses were mediated by CD4+ cells, and proliferations of CD4- cells were prominent. There were no haplotype-specific suppressor cells detected which would cause the unresponsiveness to the thymic class II MHC. These results indicated that the thymic lobes treated with 2'-deoxyguanosine were defective in the ability to induce the transplantation tolerance for the class I MHC expressed on the thymus, although the same thymic lobes were able to induce the transplantation tolerance for the thymic class II MHC.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D008212 Lymphocyte Depletion Immunosuppression by reduction of circulating lymphocytes or by T-cell depletion of bone marrow. The former may be accomplished in vivo by thoracic duct drainage or administration of antilymphocyte serum. The latter is performed ex vivo on bone marrow before its transplantation. Depletion, Lymphocyte
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008806 Mice, Inbred AKR An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mice, AKR,Mouse, AKR,Mouse, Inbred AKR,AKR Mice,AKR Mice, Inbred,AKR Mouse,AKR Mouse, Inbred,Inbred AKR Mice,Inbred AKR Mouse
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D011828 Radiation Chimera An organism whose body contains cell populations of different genotypes as a result of the TRANSPLANTATION of donor cells after sufficient ionizing radiation to destroy the mature recipient's cells which would otherwise reject the donor cells. Chimera, Radiation,Chimeras, Radiation,Radiation Chimeras
D003849 Deoxyguanosine A nucleoside consisting of the base guanine and the sugar deoxyribose.

Related Publications

G Suzuki, and T Moriyama, and Y Takeuchi, and Y Kawase, and S Habu
February 1991, Transplantation proceedings,
G Suzuki, and T Moriyama, and Y Takeuchi, and Y Kawase, and S Habu
July 2019, Journal of visualized experiments : JoVE,
G Suzuki, and T Moriyama, and Y Takeuchi, and Y Kawase, and S Habu
September 1989, European journal of immunology,
G Suzuki, and T Moriyama, and Y Takeuchi, and Y Kawase, and S Habu
January 1980, Haematology and blood transfusion,
G Suzuki, and T Moriyama, and Y Takeuchi, and Y Kawase, and S Habu
September 1982, Thymus,
G Suzuki, and T Moriyama, and Y Takeuchi, and Y Kawase, and S Habu
April 1983, Cellular immunology,
G Suzuki, and T Moriyama, and Y Takeuchi, and Y Kawase, and S Habu
January 1981, Experimental cell biology,
G Suzuki, and T Moriyama, and Y Takeuchi, and Y Kawase, and S Habu
February 1974, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
G Suzuki, and T Moriyama, and Y Takeuchi, and Y Kawase, and S Habu
March 1975, Nature,
G Suzuki, and T Moriyama, and Y Takeuchi, and Y Kawase, and S Habu
January 1990, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!