Signal transduction pathways in the pathophysiology of bipolar disorder. 2011

Jeremy W Gawryluk, and L Trevor Young
Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 2A1, jeremy.gawryluk@ubc.ca.

Signal transduction pathways and genes associated with cellular life and death have received much attention in bipolar disorder (BPD) and provide scientists with molecular targets for understanding the biological basis of BPD. In this chapter, we describe the signal transduction pathways involved in the molecular biology of BPD and the indications for the mechanisms of disease and treatment. We discuss the BPD literature with respect to the disease itself and the effects of mood stabilizer treatment on cellular receptors, including G-protein-coupled receptors, glutamate receptors, and tyrosine receptor kinase. We also discuss the intracellular alterations observed in BPD to second messenger systems, such as cyclic adenosine monophosphate (cAMP), protein kinase A, phosphoinositide pathways, glycogen synthase kinase-3, protein kinase B, Wnt, and arachidonic acid. We describe how receptor activation and modulation of second messengers occurs, and how transcription factors are activated and altered in this disease (e.g., the transcription factors ?-catenin, cAMP response element binding protein, heat shock transcription factor-1, and activator protein-1). Abnormalities in intracellular signal transduction pathways could generate a functional discrepancy in numerous neurotransmitter systems, which may explain the varied clinical symptoms observed in BPD. The influence of mood stabilizers on transcription factors may be important in connecting the regulation of gene expression to neuroplasticity and cellular resilience.

UI MeSH Term Description Entries
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001714 Bipolar Disorder A major affective disorder marked by severe mood swings (manic or major depressive episodes) and a tendency to remission and recurrence. Affective Psychosis, Bipolar,Bipolar Disorder Type 1,Bipolar Disorder Type 2,Bipolar Mood Disorder,Depression, Bipolar,Manic Depression,Manic Disorder,Manic-Depressive Psychosis,Psychosis, Manic-Depressive,Type 1 Bipolar Disorder,Type 2 Bipolar Disorder,Psychoses, Manic-Depressive,Bipolar Affective Psychosis,Bipolar Depression,Bipolar Disorders,Bipolar Mood Disorders,Depression, Manic,Depressions, Manic,Disorder, Bipolar,Disorder, Bipolar Mood,Disorder, Manic,Manic Depressive Psychosis,Manic Disorders,Mood Disorder, Bipolar,Psychoses, Bipolar Affective,Psychoses, Manic Depressive,Psychosis, Bipolar Affective,Psychosis, Manic Depressive
D015290 Second Messenger Systems Systems in which an intracellular signal is generated in response to an intercellular primary messenger such as a hormone or neurotransmitter. They are intermediate signals in cellular processes such as metabolism, secretion, contraction, phototransduction, and cell growth. Examples of second messenger systems are the adenyl cyclase-cyclic AMP system, the phosphatidylinositol diphosphate-inositol triphosphate system, and the cyclic GMP system. Intracellular Second Messengers,Second Messengers,Intracellular Second Messenger,Messenger, Second,Messengers, Intracellular Second,Messengers, Second,Second Messenger,Second Messenger System,Second Messenger, Intracellular,Second Messengers, Intracellular,System, Second Messenger,Systems, Second Messenger
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Jeremy W Gawryluk, and L Trevor Young
January 2001, Journal of psychiatry & neuroscience : JPN,
Jeremy W Gawryluk, and L Trevor Young
March 2002, Canadian journal of psychiatry. Revue canadienne de psychiatrie,
Jeremy W Gawryluk, and L Trevor Young
January 2011, PloS one,
Jeremy W Gawryluk, and L Trevor Young
January 2023, Frontiers in neuroscience,
Jeremy W Gawryluk, and L Trevor Young
June 1996, Journal of neurochemistry,
Jeremy W Gawryluk, and L Trevor Young
January 1989, Life sciences,
Jeremy W Gawryluk, and L Trevor Young
August 1998, IDrugs : the investigational drugs journal,
Jeremy W Gawryluk, and L Trevor Young
January 2011, European journal of cell biology,
Jeremy W Gawryluk, and L Trevor Young
November 1994, Trends in endocrinology and metabolism: TEM,
Copied contents to your clipboard!