Kinetic modeling of the recA protein promoted renaturation of complementary DNA strands. 1989

F R Bryant, and K L Menge, and T T Nguyen
Department of Biochemistry, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, Maryland 21205.

Quantitative agarose gel assays reveal that the recA protein promoted renaturation of complementary DNA strands (phi X DNA) proceeds in two stages. The first stage results in the formation of unit-length duplex DNA as well as a distribution of other products ("initial products"). In the second stage, the initial products are converted to complex multipaired DNA structures ("network DNA"). In the presence of ATP, the initial products are formed within 2 min and are then rapidly converted to network DNA. In the absence of ATP, the initial products are formed nearly as fast as with ATP present, but they are converted to network DNA at a much lower rate. The time-dependent formation of initial products and network DNA from complementary single strands for both the ATP-stimulated and ATP-independent reactions can be modeled by using a simple two-step sequential kinetic scheme. This model indicates that the primary effect of ATP in the recA protein promoted renaturation reaction is not on the initial pairing step (which leads to the formation of initial products) but rather is to increase the rate at which subsequent pairing events can occur.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009695 Nucleic Acid Renaturation The reformation of all, or part of, the native conformation of a nucleic acid molecule after the molecule has undergone denaturation. Acid Renaturation, Nucleic,Acid Renaturations, Nucleic,Nucleic Acid Renaturations,Renaturation, Nucleic Acid,Renaturations, Nucleic Acid
D010584 Bacteriophage phi X 174 The type species of the genus MICROVIRUS. A prototype of the small virulent DNA coliphages, it is composed of a single strand of supercoiled circular DNA, which on infection, is converted to a double-stranded replicative form by a host enzyme. Coliphage phi X 174,Enterobacteria phage phi X 174,Phage phi X 174,phi X 174 Phage,Phage phi X174
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011938 Rec A Recombinases A family of recombinases initially identified in BACTERIA. They catalyze the ATP-driven exchange of DNA strands in GENETIC RECOMBINATION. The product of the reaction consists of a duplex and a displaced single-stranded loop, which has the shape of the letter D and is therefore called a D-loop structure. Rec A Protein,RecA Protein,Recombinases, Rec A
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

F R Bryant, and K L Menge, and T T Nguyen
January 1985, Proceedings of the National Academy of Sciences of the United States of America,
F R Bryant, and K L Menge, and T T Nguyen
May 1996, The Biochemical journal,
F R Bryant, and K L Menge, and T T Nguyen
October 1986, The Journal of biological chemistry,
F R Bryant, and K L Menge, and T T Nguyen
December 1993, Journal of virology,
F R Bryant, and K L Menge, and T T Nguyen
July 1993, Proceedings of the National Academy of Sciences of the United States of America,
F R Bryant, and K L Menge, and T T Nguyen
May 1983, The Journal of biological chemistry,
F R Bryant, and K L Menge, and T T Nguyen
April 1997, Journal of molecular biology,
F R Bryant, and K L Menge, and T T Nguyen
July 1985, Biochemistry,
F R Bryant, and K L Menge, and T T Nguyen
January 1979, Proceedings of the National Academy of Sciences of the United States of America,
F R Bryant, and K L Menge, and T T Nguyen
June 1990, The Journal of biological chemistry,
Copied contents to your clipboard!