Inhibition of interleukin-1 production by 1,25-dihydroxyvitamin D3. 1989

C D Tsoukas, and D Watry, and S S Escobar, and D M Provvedini, and C A Dinarello, and F G Hustmyer, and S C Manolagas
Department of Biology, San Diego State University, California 92182.

The hormonal form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], inhibits the proliferation of T lymphocytes and production of growth-promoting factors (including interleukin-2) (IL2) in CTLL2 murine cells. In this study, we investigated the role of monocytes in this hormone-mediated inhibitory effect, by testing the effects of 1,25-(OH)2D3 on the ability of the mitogenic lectin phytohemagglutinin (PHA) to induce T cell activation in either a monocyte-dependent or phorbol myristate acetate (PMA)-driven (monocyte-independent) system. The results indicate that proliferation of T cells and production of growth-promoting factors are inhibited by 1,25-(OH)2D3 only in the monocyte-dependent system. Preincubation of monocytes with 1,25-(OH)2D3 for various periods of time and subsequent removal of the hormone resulted in inhibition of the PHA-driven proliferation of T cells. Preincubation for 2 h resulted in 20% inhibition, while preincubation for 36 h reduced proliferation to 50% of the control value [no 1,25-(OH)2D3 exposure]. These data suggested that monocytes are important participants in 1,25-(OH)2D3-mediated events. Therefore, we tested the effects of the hormone on the production of IL1, a monocyte-derived product thought to be involved in the induction of IL2 release and the subsequent development of the T cell proliferative response. 1,25-(OH)2D3 inhibited the production of both extracellular and cell-associated immunoreactive IL1 alpha and IL1 beta. Indomethacin, a prostaglandin synthetase inhibitor, did not alter the inhibitory properties of 1,25-(OH)2D3, suggesting that prostaglandins are not responsible for the inhibitory phenomenon. We conclude that part of the ability of 1,25-(OH)2D3 to inhibit T cell proliferation may be due to direct effects on monocytes by down-regulating IL-1 production. However, it is unlikely that the immunoregulatory properties of 1,25-(OH)2D3 on T cells are mediated solely through monocytes, and it is possible that the hormone also exerts its influence directly on T cells.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D007959 Lymphocyte Culture Test, Mixed Measure of histocompatibility at the HL-A locus. Peripheral blood lymphocytes from two individuals are mixed together in tissue culture for several days. Lymphocytes from incompatible individuals will stimulate each other to proliferate significantly (measured by tritiated thymidine uptake) whereas those from compatible individuals will not. In the one-way MLC test, the lymphocytes from one of the individuals are inactivated (usually by treatment with MITOMYCIN or radiation) thereby allowing only the untreated remaining population of cells to proliferate in response to foreign histocompatibility antigens. Leukocyte Culture Test, Mixed,Mixed Lymphocyte Culture Test,Mixed Lymphocyte Reaction,Mixed Leukocyte Culture Test,Mixed Leukocyte Reaction,Leukocyte Reaction, Mixed,Leukocyte Reactions, Mixed,Lymphocyte Reaction, Mixed,Lymphocyte Reactions, Mixed,Mixed Leukocyte Reactions,Mixed Lymphocyte Reactions
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010835 Phytohemagglutinins Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture. Kidney Bean Lectin,Kidney Bean Lectins,Lectins, Kidney Bean,Phaseolus vulgaris Lectin,Phaseolus vulgaris Lectins,Phytohemagglutinin,Hemagglutinins, Plant,Lectin, Kidney Bean,Lectin, Phaseolus vulgaris,Lectins, Phaseolus vulgaris,Plant Hemagglutinins
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M

Related Publications

C D Tsoukas, and D Watry, and S S Escobar, and D M Provvedini, and C A Dinarello, and F G Hustmyer, and S C Manolagas
May 1991, Immunology letters,
C D Tsoukas, and D Watry, and S S Escobar, and D M Provvedini, and C A Dinarello, and F G Hustmyer, and S C Manolagas
March 1974, Science (New York, N.Y.),
C D Tsoukas, and D Watry, and S S Escobar, and D M Provvedini, and C A Dinarello, and F G Hustmyer, and S C Manolagas
September 1983, The Biochemical journal,
C D Tsoukas, and D Watry, and S S Escobar, and D M Provvedini, and C A Dinarello, and F G Hustmyer, and S C Manolagas
September 2020, Medicina (Kaunas, Lithuania),
C D Tsoukas, and D Watry, and S S Escobar, and D M Provvedini, and C A Dinarello, and F G Hustmyer, and S C Manolagas
January 1991, Connective tissue research,
C D Tsoukas, and D Watry, and S S Escobar, and D M Provvedini, and C A Dinarello, and F G Hustmyer, and S C Manolagas
August 1990, The American journal of physiology,
C D Tsoukas, and D Watry, and S S Escobar, and D M Provvedini, and C A Dinarello, and F G Hustmyer, and S C Manolagas
February 1995, Endocrinology,
C D Tsoukas, and D Watry, and S S Escobar, and D M Provvedini, and C A Dinarello, and F G Hustmyer, and S C Manolagas
April 1986, Cellular immunology,
C D Tsoukas, and D Watry, and S S Escobar, and D M Provvedini, and C A Dinarello, and F G Hustmyer, and S C Manolagas
May 1994, The Journal of investigative dermatology,
C D Tsoukas, and D Watry, and S S Escobar, and D M Provvedini, and C A Dinarello, and F G Hustmyer, and S C Manolagas
September 1986, Nutrition reviews,
Copied contents to your clipboard!