Alteration by heat shock and immunological characterization of Drosophila small nuclear ribonucleoproteins. 1989

L G Wright-Sandor, and M Reichlin, and S L Tobin
Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190.

Sera from human patients with systemic lupus erythematosus (SLE) have been shown to react with snRNP particles of both mammals and Drosophila (Mount, S. M. and J. A. Steitz. 1981. Nucleic Acids Res. 9:6351-6368). We have utilized fully characterized monospecific sera and specifically purified antibodies to carry out indirect immunofluorescence experiments with frozen sections of Drosophila embryos. Embryos subjected to severe heat shock before sectioning showed reduced binding of anti-Sm sera. Anti-nRNP sera reacted identically with antigens of heat shocked and non-heat-shocked sections. The reduction in anti-Sm fluorescence was restored by a brief salt wash. These results imply a noncovalent alteration in the conformation of Sm antigens with the administration of heat shock that can revert with exposure to salt. Drosophila antigens have been compared to mammalian standards, showing partial identity with bovine spleen extract (BSE) antigens when reacted with anti-Sm sera. The antigenic relatedness between affinity-purified heat-shocked and non-heat-shocked Drosophila antigens and their mammalian homologues was examined by quantitative ELISA methodology. In all cases, the Drosophila antigens from heat-shocked and non-heat-shocked embryos were identical. We theorize that the heat shock-induced alteration of Sm antigen reverst during extraction. Because the snRNP antigens have been shown to be involved in splicing, and because splicing is inhibited during heat shock (Yost, H. J., and S. Lindquist. 1986. Cell. 45:185-193), our results provide information on the nature and stability of a change in these antigens which may be a central element in control of the heat shock response.

UI MeSH Term Description Entries
D007123 Immunoelectrophoresis, Two-Dimensional Immunoelectrophoresis in which a second electrophoretic transport is performed on the initially separated antigen fragments into an antibody-containing medium in a direction perpendicular to the first electrophoresis. Immunoelectrophoresis, Crossed,Immunoelectrophoresis, 2-D,Immunoelectrophoresis, 2D,2-D Immunoelectrophoresis,2D Immunoelectrophoresis,Crossed Immunoelectrophoresis,Immunoelectrophoresis, 2 D,Immunoelectrophoresis, Two Dimensional,Two-Dimensional Immunoelectrophoresis
D008180 Lupus Erythematosus, Systemic A chronic, relapsing, inflammatory, and often febrile multisystemic disorder of connective tissue, characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is of unknown etiology, but is thought to represent a failure of the regulatory mechanisms of the autoimmune system. The disease is marked by a wide range of system dysfunctions, an elevated erythrocyte sedimentation rate, and the formation of LE cells in the blood or bone marrow. Libman-Sacks Disease,Lupus Erythematosus Disseminatus,Systemic Lupus Erythematosus,Disease, Libman-Sacks,Libman Sacks Disease
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005779 Immunodiffusion Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction. Gel Diffusion Tests,Diffusion Test, Gel,Diffusion Tests, Gel,Gel Diffusion Test,Immunodiffusions,Test, Gel Diffusion,Tests, Gel Diffusion
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001324 Autoantigens Endogenous tissue constituents with the ability to interact with AUTOANTIBODIES and cause an immune response. Autoantigen,Autologous Antigen,Autologous Antigens,Self-Antigen,Self-Antigens,Antigen, Autologous,Antigens, Autologous,Self Antigen,Self Antigens

Related Publications

L G Wright-Sandor, and M Reichlin, and S L Tobin
August 1982, Molecular and cellular biology,
L G Wright-Sandor, and M Reichlin, and S L Tobin
October 1992, The Journal of biological chemistry,
L G Wright-Sandor, and M Reichlin, and S L Tobin
September 1987, Journal of clinical immunology,
L G Wright-Sandor, and M Reichlin, and S L Tobin
June 2000, The international journal of biochemistry & cell biology,
L G Wright-Sandor, and M Reichlin, and S L Tobin
January 1990, Methods in enzymology,
L G Wright-Sandor, and M Reichlin, and S L Tobin
January 2011, Wiley interdisciplinary reviews. RNA,
L G Wright-Sandor, and M Reichlin, and S L Tobin
September 1990, Experimental cell research,
L G Wright-Sandor, and M Reichlin, and S L Tobin
June 1983, The Journal of biological chemistry,
L G Wright-Sandor, and M Reichlin, and S L Tobin
February 1983, Molecular and cellular biology,
L G Wright-Sandor, and M Reichlin, and S L Tobin
May 1985, FEBS letters,
Copied contents to your clipboard!