An investigation of mitochondrial inner membranes by rapid-freeze deep-etch techniques. 1989

R D Allen, and C C Schroeder, and A K Fok
Pacific Biomedical Research Center, University of Hawaii, Honolulu 96822.

Physical fixation by rapid freezing followed by freeze-fracture and deep-etching has provided the means for potentially seeing the three-dimensional arrangement in the native state of particles on mitochondrial inner membranes. We have used these techniques to study the tubular cristae of Paramecium in the hope of determining the arrangement of F1 complexes, their abundance, and location in the membranes. We also sought information regarding other respiratory complexes in these membranes. Our results, supported by stereo pairs, show that F1 complexes are arranged as a double row of particles spaced at 12 nm along each row as a zipper following the full length of the outer curve of the helically shaped tubular cristae. There are an average of 1,500 highly ordered F1 complexes per micrometer squared of 50-nm tubular cristae surface. The F1 complexes definitely lie outside the membranes in their native state. Other particle subsets, also nonrandomly arrayed, were seen. One such population located along the inner helical curve consisted of large 13-nm-wide particles that were spaced at 30 nm center-to-center. Such particles, because of their large size and relative abundance when compared to F1 units, resemble complex I of the respiratory complexes. Any models attempting to understand the coupling of respiratory complexes with F0F1 ATPase in Paramecium must take into account a relatively high degree of order and potential immobility of at least some of these integral membrane complexes.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010247 Paramecium A genus of ciliate protozoa that is often large enough to be seen by the naked eye. Paramecia are commonly used in genetic, cytological, and other research. Parameciums
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D005613 Freeze Etching A replica technique in which cells are frozen to a very low temperature and cracked with a knife blade to expose the interior surfaces of the cells or cell membranes. The cracked cell surfaces are then freeze-dried to expose their constituents. The surfaces are now ready for shadowing to be viewed using an electron microscope. This method differs from freeze-fracturing in that no cryoprotectant is used and, thus, allows for the sublimation of water during the freeze-drying process to etch the surfaces. Etching, Freeze
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

R D Allen, and C C Schroeder, and A K Fok
November 1992, Journal of neurocytology,
R D Allen, and C C Schroeder, and A K Fok
May 1994, Microscopy research and technique,
R D Allen, and C C Schroeder, and A K Fok
January 1989, Fukuoka igaku zasshi = Hukuoka acta medica,
R D Allen, and C C Schroeder, and A K Fok
January 1995, Methods in cell biology,
R D Allen, and C C Schroeder, and A K Fok
January 1989, Journal of electron microscopy,
R D Allen, and C C Schroeder, and A K Fok
February 1989, The Anatomical record,
R D Allen, and C C Schroeder, and A K Fok
May 1990, The Anatomical record,
R D Allen, and C C Schroeder, and A K Fok
September 1971, Journal of cell science,
R D Allen, and C C Schroeder, and A K Fok
January 1986, Methods in enzymology,
R D Allen, and C C Schroeder, and A K Fok
August 1988, Puerto Rico health sciences journal,
Copied contents to your clipboard!