Photoaffinity labelling and isoelectric focusing of the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor. 1989

D E Mais, and P V Halushka
Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston 29425.

UI MeSH Term Description Entries
D007525 Isoelectric Focusing Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point. Electrofocusing,Focusing, Isoelectric
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011982 Receptors, Prostaglandin Cell surface receptors that bind prostaglandins with high affinity and trigger intracellular changes which influence the behavior of cells. Prostaglandin receptor subtypes have been tentatively named according to their relative affinities for the endogenous prostaglandins. They include those which prefer prostaglandin D2 (DP receptors), prostaglandin E2 (EP1, EP2, and EP3 receptors), prostaglandin F2-alpha (FP receptors), and prostacyclin (IP receptors). Prostaglandin Receptors,Prostaglandin Receptor,Receptor, Prostaglandin,Receptors, Prostaglandins,Prostaglandins Receptors
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D001386 Azides Organic or inorganic compounds that contain the -N3 group. Azide
D013928 Thromboxane A2 An unstable intermediate between the prostaglandin endoperoxides and thromboxane B2. The compound has a bicyclic oxaneoxetane structure. It is a potent inducer of platelet aggregation and causes vasoconstriction. It is the principal component of rabbit aorta contracting substance (RCS). Rabbit Aorta Contracting Substance,A2, Thromboxane
D013931 Thromboxanes Physiologically active compounds found in many organs of the body. They are formed in vivo from the prostaglandin endoperoxides and cause platelet aggregation, contraction of arteries, and other biological effects. Thromboxanes are important mediators of the actions of polyunsaturated fatty acids transformed by cyclooxygenase. Thromboxane
D017482 Receptors, Thromboxane Cell surface proteins that bind THROMBOXANES with high affinity and trigger intracellular changes influencing the behavior of cells. Some thromboxane receptors act via the inositol phosphate and diacylglycerol second messenger systems. TP Receptors,Thromboxane Receptors,Receptors, Thromboxanes,TP Receptor,Thromboxane Receptor,Receptor, TP,Receptor, Thromboxane,Receptors, TP,Thromboxanes Receptors

Related Publications

D E Mais, and P V Halushka
October 1992, Prostaglandins, leukotrienes, and essential fatty acids,
D E Mais, and P V Halushka
August 1989, Biochemical and biophysical research communications,
D E Mais, and P V Halushka
January 1991, Advances in prostaglandin, thromboxane, and leukotriene research,
D E Mais, and P V Halushka
January 1992, Biochemical pharmacology,
D E Mais, and P V Halushka
August 1991, Prostaglandins, leukotrienes, and essential fatty acids,
D E Mais, and P V Halushka
June 1989, Thrombosis and haemostasis,
D E Mais, and P V Halushka
January 1990, Methods in enzymology,
Copied contents to your clipboard!