Identification of a mutation in Escherichia coli F1-ATPase beta-subunit conferring resistance to aurovertin. 1989

R S Lee, and J Pagan, and M Satre, and P V Vignais, and A E Senior
Department of Biochemistry, University of Rochester Medical Center, NY 14642.

A mutation conferring aurovertin resistance on Escherichia coli F1-ATPase was identified as R398----H in the F1 beta-subunit. Beta-subunit from the mutant does not bind aurovertin; therefore our results suggest the region of sequence around residue beta-398 is involved in aurovertin binding. Since nucleotide and aurovertin binding to isolated beta-subunit are not mutually exclusive, the data further suggest that the beta-subunit catalytic nucleotide-binding domain does not include residue 398. The mutation prevented aurovertin inhibition of ATPase at pH 6 and 8.5, implying charge on the arginine side-chain is not a major determinant of aurovertin binding or that the pK of R398 is shifted due to a peculiar environment. The equivalent residue is usually arginine in F1 beta-subunits of different species; notably in the aurovertin-insensitive thermophilic bacterium PS3 F1-ATPase, this residue is phenylalanine.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011714 Pyrans Pyran
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001313 Aurovertins Very toxic and complex pyrone derivatives from the fungus Calcarisporium arbuscula. They bind to and inhibit mitochondrial ATPase, thereby uncoupling oxidative phosphorylation. They are used as biochemical tools. Aurovertin
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

R S Lee, and J Pagan, and M Satre, and P V Vignais, and A E Senior
November 1977, Biochimica et biophysica acta,
R S Lee, and J Pagan, and M Satre, and P V Vignais, and A E Senior
October 1992, The Journal of biological chemistry,
R S Lee, and J Pagan, and M Satre, and P V Vignais, and A E Senior
June 1987, The Journal of biological chemistry,
R S Lee, and J Pagan, and M Satre, and P V Vignais, and A E Senior
June 1988, FEBS letters,
R S Lee, and J Pagan, and M Satre, and P V Vignais, and A E Senior
April 1993, The Journal of biological chemistry,
R S Lee, and J Pagan, and M Satre, and P V Vignais, and A E Senior
December 1990, The Journal of biological chemistry,
R S Lee, and J Pagan, and M Satre, and P V Vignais, and A E Senior
April 1988, The Journal of biological chemistry,
R S Lee, and J Pagan, and M Satre, and P V Vignais, and A E Senior
February 1979, The Journal of biological chemistry,
R S Lee, and J Pagan, and M Satre, and P V Vignais, and A E Senior
September 1980, Journal of biochemistry,
Copied contents to your clipboard!