Empagliflozin: a review of its use in patients with type 2 diabetes mellitus. 2014

Lesley J Scott
Springer, Private Bag 65901, Mairangi Bay 0754, Auckland, New Zealand, demail@springer.com.

Oral empagliflozin (Jardiance(®)), a sodium glucose cotransporter-2 (SGLT2) inhibitor, is a convenient once-daily treatment for adult patients with type 2 diabetes mellitus. By inhibiting reabsorption of glucose from the proximal tubules in the kidney via inhibition of SGLT2, empagliflozin provides a novel insulin-independent mechanism of lowering blood glucose. In several phase III trials (≤104 weeks' duration; typically 24 weeks' duration) and extension studies (typically ≥76 weeks' treatment), empagliflozin monotherapy or add-on therapy to other antihyperglycaemics, including insulin, improved glycaemic control and reduced bodyweight and systolic blood pressure in adult patients with type 2 diabetes. In a large phase III trial, as add-on therapy to metformin, empagliflozin was shown to be noninferior to glimepiride at 52 and 104 weeks and superior to glimepiride at 104 weeks, in terms of reductions in glycated haemoglobin level (primary endpoint). Empagliflozin was well tolerated by participants in these clinical trials, with most adverse events being mild or moderate in intensity. Empagliflozin treatment appeared to have no intrinsic risk of hypoglycaemia, although hypoglycaemia occurred more frequently when empagliflozin was coadministered with insulin and/or a sulfonylurea. With its insulin-independent mechanism of action, empagliflozin monotherapy or combination therapy with other antidiabetic drugs, including insulin, provides a useful addition to the therapeutic options for the management of type 2 diabetes. This article reviews the pharmacological properties and clinical use of empagliflozin in patients with type 2 diabetes.

UI MeSH Term Description Entries
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D005960 Glucosides A GLYCOSIDE that is derived from GLUCOSE. Glucoside
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations
D001559 Benzhydryl Compounds Compounds which contain the methyl radical substituted with two benzene rings. Permitted are any substituents, but ring fusion to any of the benzene rings is not allowed. Diphenylmethyl Compounds,Compounds, Benzhydryl,Compounds, Diphenylmethyl
Copied contents to your clipboard!