Extracellular matrix heparan sulfate proteoglycans modulate the mitogenic capacity of acidic fibroblast growth factor. 1989

P B Gordon, and H U Choi, and G Conn, and A Ahmed, and B Ehrmann, and L Rosenberg, and V B Hatcher
Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10467.

Confluent cultures of human endothelial cells deposit into extracellular matrix (ECM) distinct heparan sulfate proteoglycans (HSPG) which modulate acidic fibroblast growth factor's (aFGF) ability to stimulate human endothelial cell mitogenic capacity. Extracellular matrix 35S-HSPG were isolated from cultures metabolically labelled with Na235SO4 by DEAE-Sepharose, Sepharose CL-4B, and aFGF-Affi-Gel 15 column chromatography and identified by resistance to chondroitinase ABC and sensitivity to nitrous acid. Fifty to sixty percent of the 35S-HSPG deposited into ECM do not bind aFGF. The bound 35S-HSGP (40-50% of the total counts applied) eluted from the aFGF-Affi-Gel column after the addition of buffer containing 2 M NaCl. aFGF-binding and aFGF-nonbinding 35S-HSPG were individually pooled and further purified by Sepharose CL-4B column chromatography. 35S-HSPG which bind aFGF, designated HSPGP, were 100-fold superior to heparin in augmenting the mitogenic efficacy of aFGF in sparse proliferating cultures. In contrast, however, 35S-HSPG, which did not bind aFGF, designated HSPG1, inhibited aFGF-stimulated proliferation in both sparse and subconfluent endothelial cell cultures. The majority of the biological activity of both aFGF-potentiating HSPGP and aFGF-inhibitory HSPG1 was contained in the glycosaminoglycan chains released by alkaline borohydride treatment of intact HSPGP or HSPG1, respectively. 3H-Core protein derived from HSPGP or HSPG1 contained only minor biological activity. The ability of heparitinase or heparinase (Flavobacterium heparinum) to abolish biological activity differed, depending upon the HSPG tested, also suggested that these are two distinct HSPGs.

UI MeSH Term Description Entries
D011508 Chondroitin Sulfate Proteoglycans Proteoglycans consisting of proteins linked to one or more CHONDROITIN SULFATE-containing oligosaccharide chains. Proteochondroitin Sulfates,Chondroitin Sulfate Proteoglycan,Proteochondroitin Sulfate,Proteoglycan, Chondroitin Sulfate,Proteoglycans, Chondroitin Sulfate,Sulfate Proteoglycan, Chondroitin,Sulfate Proteoglycans, Chondroitin
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast
D006025 Glycosaminoglycans Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine (see ACETYLGLUCOSAMINE) or N-acetylgalactosamine (see ACETYLGALACTOSAMINE). Glycosaminoglycan,Mucopolysaccharides
D006131 Growth Inhibitors Endogenous or exogenous substances which inhibit the normal growth of human and animal cells or micro-organisms, as distinguished from those affecting plant growth ( Cell Growth Inhibitor,Cell Growth Inhibitors,Growth Inhibitor,Growth Inhibitor, Cell,Growth Inhibitors, Cell,Inhibitor, Cell Growth,Inhibitor, Growth,Inhibitors, Cell Growth,Inhibitors, Growth

Related Publications

P B Gordon, and H U Choi, and G Conn, and A Ahmed, and B Ehrmann, and L Rosenberg, and V B Hatcher
August 2013, Current opinion in genetics & development,
P B Gordon, and H U Choi, and G Conn, and A Ahmed, and B Ehrmann, and L Rosenberg, and V B Hatcher
November 2013, The American journal of pathology,
P B Gordon, and H U Choi, and G Conn, and A Ahmed, and B Ehrmann, and L Rosenberg, and V B Hatcher
November 1994, Biochemistry,
P B Gordon, and H U Choi, and G Conn, and A Ahmed, and B Ehrmann, and L Rosenberg, and V B Hatcher
April 1994, Archives of biochemistry and biophysics,
P B Gordon, and H U Choi, and G Conn, and A Ahmed, and B Ehrmann, and L Rosenberg, and V B Hatcher
September 2017, Regenerative engineering and translational medicine,
P B Gordon, and H U Choi, and G Conn, and A Ahmed, and B Ehrmann, and L Rosenberg, and V B Hatcher
July 1993, Molecular and cellular biochemistry,
P B Gordon, and H U Choi, and G Conn, and A Ahmed, and B Ehrmann, and L Rosenberg, and V B Hatcher
December 1996, Experimental cell research,
P B Gordon, and H U Choi, and G Conn, and A Ahmed, and B Ehrmann, and L Rosenberg, and V B Hatcher
August 1987, Journal of cellular physiology,
P B Gordon, and H U Choi, and G Conn, and A Ahmed, and B Ehrmann, and L Rosenberg, and V B Hatcher
June 1993, Blood,
P B Gordon, and H U Choi, and G Conn, and A Ahmed, and B Ehrmann, and L Rosenberg, and V B Hatcher
December 2008, Annals of biomedical engineering,
Copied contents to your clipboard!