Adenosine receptors and renal ischaemia reperfusion injury. 2015

M M Rabadi, and H T Lee
Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA.

One of the frequent clinical complications that results in billions of dollars in healthcare costs annually in the United States is acute kidney injury (AKI). Ischaemia reperfusion (IR) injury is a major cause AKI. Unfortunately, no effective treatment or preventive measure for AKI exists. With increased surgical complexity coupled with increasing number of elderly, the incidence of AKI is becoming more frequent. Adenosine is a metabolic breakdown product of adenosine triphosphate (ATP) and contributes to the regulation of multiple physiological events. Extracellular adenosine activates four subtypes of adenosine receptors (AR) including A1 AR, A2 A AR, A2 B AR and A3 AR. In the kidney, adenosine regulates glomerular filtration rate, vascular tone, renin release and is an integrative part of tubular glomerular feedback signal to the afferent arterioles. In addition, each AR subtype powerfully modulates renal IR injury. The A1 AR activation protects against ischaemic insult by reducing apoptosis, necrosis and inflammation. Activation of A2 A AR protects against renal injury by modulating leucocyte-mediated inflammation as well as directly reducing renal tubular inflammation. Activation of A2 B AR acts via direct activation of renal parenchymal as well as renovascular receptors and is important in kidney preconditioning. Finally, activation of A3 AR exacerbates renal damage following renal IR injury while A3 AR antagonism attenuates renal damage following ischaemic insult. Latest body of research suggests that kidney AR modulation may be a promising approach to treat ischaemic AKI. This brief review focuses on the signalling pathways of adenosine in the kidney followed by the role for various AR modulations in protecting against ischaemic AKI.

UI MeSH Term Description Entries
D007674 Kidney Diseases Pathological processes of the KIDNEY or its component tissues. Disease, Kidney,Diseases, Kidney,Kidney Disease
D009336 Necrosis The death of cells in an organ or tissue due to disease, injury or failure of the blood supply.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015427 Reperfusion Injury Adverse functional, metabolic, or structural changes in tissues that result from the restoration of blood flow to the tissue (REPERFUSION) following ISCHEMIA. Ischemia-Reperfusion Injury,Injury, Ischemia-Reperfusion,Injury, Reperfusion,Reperfusion Damage,Damage, Reperfusion,Injury, Ischemia Reperfusion,Ischemia Reperfusion Injury,Ischemia-Reperfusion Injuries,Reperfusion Damages,Reperfusion Injuries
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D018047 Receptors, Purinergic P1 A class of cell surface receptors that prefer ADENOSINE to other endogenous PURINES. Purinergic P1 receptors are widespread in the body including the cardiovascular, respiratory, immune, and nervous systems. There are at least two pharmacologically distinguishable types (A1 and A2, or Ri and Ra). Adenosine Receptors,P1 Purinoceptors,Purinergic P1 Receptors,Receptors, Adenosine,Adenosine Receptor,P1 Purinoceptor,Receptor, Purinergic P1,P1 Receptor, Purinergic,P1 Receptors, Purinergic,Purinergic P1 Receptor,Purinoceptor, P1,Purinoceptors, P1,Receptor, Adenosine

Related Publications

M M Rabadi, and H T Lee
February 1996, The British journal of surgery,
M M Rabadi, and H T Lee
October 2008, Nephrology (Carlton, Vic.),
M M Rabadi, and H T Lee
March 2003, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
M M Rabadi, and H T Lee
January 1993, Cardiovascular research,
M M Rabadi, and H T Lee
August 2006, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
M M Rabadi, and H T Lee
January 2010, Nephron. Experimental nephrology,
M M Rabadi, and H T Lee
March 2021, Journal of cellular and molecular medicine,
M M Rabadi, and H T Lee
October 2011, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
M M Rabadi, and H T Lee
December 2007, American journal of physiology. Renal physiology,
M M Rabadi, and H T Lee
January 2009, Handbook of experimental pharmacology,
Copied contents to your clipboard!