The rex genes of bacteriophage lambda can inhibit cell function without phage superinfection. 1989

L Snyder, and K McWilliams
Department of Microbiology, Michigan State University, East Lansing 48824.

The rexA and rexB genes of bacteriophage lambda are expressed from the prophage and cause the exclusion of many superinfecting mutant phages. We cloned the rexA and rexB genes into a multicopy plasmid so that they were overexpressed from the inducible tac promoter. No obvious phenotypes were associated with overexpressing both rexA and rexB or overexpressing rexA in the absence of rexB expression. However, induction of rexA in the presence of limiting rexB activity caused an immediate cessation of cell growth. All macromolecular synthesis abruptly ceased and amino acid transport was severely inhibited. Intracellular levels of adenosine 5'-triphosphate also dropped. These phenotypes are similar to those observed after phage superinfection, leading us to propose that at least some of the exclusion caused by the Rex proteins could be due to a change in their ratio following superinfection.

UI MeSH Term Description Entries
D008242 Lysogeny The phenomenon by which a temperate phage incorporates itself into the DNA of a bacterial host, establishing a kind of symbiotic relation between PROPHAGE and bacterium which results in the perpetuation of the prophage in all the descendants of the bacterium. Upon induction (VIRUS ACTIVATION) by various agents, such as ultraviolet radiation, the phage is released, which then becomes virulent and lyses the bacterium. Integration, Prophage,Prophage Integration,Integrations, Prophage,Prophage Integrations
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D014170 Transformation, Genetic Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome. Genetic Transformation,Genetic Transformations,Transformations, Genetic
D015163 Superinfection A frequent complication of drug therapy for microbial infection. It may result from opportunistic colonization following immunosuppression by the primary pathogen and can be influenced by the time interval between infections, microbial physiology, or host resistance. Experimental challenge and in vitro models are sometimes used in virulence and infectivity studies. Microbial Superinvasion,Superinvasion, Microbial,Microbial Superinvasions,Superinfections,Superinvasions, Microbial
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction

Related Publications

L Snyder, and K McWilliams
November 1982, Genetics,
L Snyder, and K McWilliams
December 1987, Journal of virology,
L Snyder, and K McWilliams
March 1992, Genes & development,
L Snyder, and K McWilliams
June 1991, Proceedings of the National Academy of Sciences of the United States of America,
L Snyder, and K McWilliams
November 1978, Genetical research,
L Snyder, and K McWilliams
October 1972, Journal of virology,
L Snyder, and K McWilliams
March 2003, Canadian journal of microbiology,
L Snyder, and K McWilliams
January 1974, Molecular & general genetics : MGG,
Copied contents to your clipboard!