Embryonic exposure to carbendazim induces the transcription of genes related to apoptosis, immunotoxicity and endocrine disruption in zebrafish (Danio rerio). 2014

Jinhua Jiang, and Shenggan Wu, and Changxing Wu, and Xuehua An, and Leiming Cai, and Xueping Zhao
State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China. Electronic address: jinhuajjh@sina.com.

Carbendazim is one of the most widespread environmental contaminant that can cause major concern to human and animal reproductive system. To date, very few studies have been conducted on the toxic effect of carbendazim in the non-target organism zebrafish (Danio rerio). The study presented here aimed to assess how carbendazim triggers apoptosis, immunotoxicity and endocrine disruption pathways in zebrafish during its embryo development. Our results demonstrated that the expression patterns of many key genes involved in cell apoptosis pathway (e.g. P53, Mdm2, Bbc3 and Cas8) were significantly up-regulated upon the exposure to carbendazim at the concentration of 500 μg/L, while the Bcl2 and Cas3 were down-regulated at the same concentration, interestingly, the expression level of Ogg1 decreased at all the exposure concentrations. It was also observed that the mRNA levels of CXCL-C1C, CCL1, IL-1b and TNFα which were closely related to the innate immune system, were affected in newly hatched zebrafish after exposed to different concentrations of carbendazim. Moreover, the expression of genes that are involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis including VTG, ERα, ERβ2, Dio1, Dio2, Thraa and Thrb were all down-regulated significantly after the exposure to carbendazim. The expression levels of two cytochrome P450 aromatases CYP19a and CYP19b were increased significantly after 20 and 100 μg/L carbendazim exposure, respectively. Taken together, our results indicated that carbendazim had the potential to induce cell apoptosis and cause immune toxicity as well as endocrine disruption in zebrafish during the embryo developmental stage. The information presented here also help to elucidate the environmental risks caused by the carbendazim-induced toxicity in aquatic organisms.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D002219 Carbamates Derivatives of carbamic acid, H2NC( Carbamate,Aminoformic Acids,Carbamic Acids,Acids, Aminoformic,Acids, Carbamic
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000922 Immunotoxins Semisynthetic conjugates of various toxic molecules, including RADIOACTIVE ISOTOPES and bacterial or plant toxins, with specific immune substances such as IMMUNOGLOBULINS; MONOCLONAL ANTIBODIES; and ANTIGENS. The antitumor or antiviral immune substance carries the toxin to the tumor or infected cell where the toxin exerts its poisonous effect. Affinotoxin,Antibody-Toxin Conjugate,Antibody-Toxin Conjugates,Antibody-Toxin Hybrid,Antibody-Toxin Hybrids,Chimeric Toxins,Cytotoxin-Antibody Conjugate,Cytotoxin-Antibody Conjugates,Monoclonal Antibody-Toxin Conjugate,Targeted Toxin,Targeted Toxins,Toxin Carriers,Toxin Conjugates,Toxin-Antibody Conjugate,Toxin-Antibody Conjugates,Toxin-Antibody Hybrid,Toxin-Antibody Hybrids,Toxins, Chimeric,Toxins, Targeted,Affinotoxins,Chimeric Toxin,Immunotoxin,Monoclonal Antibody-Toxin Conjugates,Toxin Carrier,Toxin Conjugate,Antibody Toxin Conjugate,Antibody Toxin Conjugates,Antibody Toxin Hybrid,Antibody Toxin Hybrids,Antibody-Toxin Conjugate, Monoclonal,Antibody-Toxin Conjugates, Monoclonal,Carrier, Toxin,Carriers, Toxin,Conjugate, Antibody-Toxin,Conjugate, Cytotoxin-Antibody,Conjugate, Monoclonal Antibody-Toxin,Conjugate, Toxin,Conjugate, Toxin-Antibody,Conjugates, Antibody-Toxin,Conjugates, Cytotoxin-Antibody,Conjugates, Monoclonal Antibody-Toxin,Conjugates, Toxin,Conjugates, Toxin-Antibody,Cytotoxin Antibody Conjugate,Cytotoxin Antibody Conjugates,Hybrid, Antibody-Toxin,Hybrid, Toxin-Antibody,Hybrids, Antibody-Toxin,Hybrids, Toxin-Antibody,Monoclonal Antibody Toxin Conjugate,Monoclonal Antibody Toxin Conjugates,Toxin Antibody Conjugate,Toxin Antibody Conjugates,Toxin Antibody Hybrid,Toxin Antibody Hybrids,Toxin, Chimeric,Toxin, Targeted
D001562 Benzimidazoles Compounds with a BENZENE fused to IMIDAZOLES.
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012739 Gonadal Steroid Hormones Steroid hormones produced by the GONADS. They stimulate reproductive organs, germ cell maturation, and the secondary sex characteristics in the males and the females. The major sex steroid hormones include ESTRADIOL; PROGESTERONE; and TESTOSTERONE. Gonadal Steroid Hormone,Sex Hormone,Sex Steroid Hormone,Sex Steroid Hormones,Sex Hormones,Hormone, Gonadal Steroid,Hormone, Sex,Hormone, Sex Steroid,Hormones, Gonadal Steroid,Hormones, Sex Steroid,Steroid Hormone, Gonadal,Steroid Hormone, Sex,Steroid Hormones, Gonadal,Steroid Hormones, Sex
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry

Related Publications

Jinhua Jiang, and Shenggan Wu, and Changxing Wu, and Xuehua An, and Leiming Cai, and Xueping Zhao
January 2011, Fish & shellfish immunology,
Jinhua Jiang, and Shenggan Wu, and Changxing Wu, and Xuehua An, and Leiming Cai, and Xueping Zhao
March 2013, Ecotoxicology and environmental safety,
Jinhua Jiang, and Shenggan Wu, and Changxing Wu, and Xuehua An, and Leiming Cai, and Xueping Zhao
February 2013, Fish & shellfish immunology,
Jinhua Jiang, and Shenggan Wu, and Changxing Wu, and Xuehua An, and Leiming Cai, and Xueping Zhao
December 2023, The Science of the total environment,
Jinhua Jiang, and Shenggan Wu, and Changxing Wu, and Xuehua An, and Leiming Cai, and Xueping Zhao
February 2021, The Science of the total environment,
Jinhua Jiang, and Shenggan Wu, and Changxing Wu, and Xuehua An, and Leiming Cai, and Xueping Zhao
May 2020, Environmental research,
Jinhua Jiang, and Shenggan Wu, and Changxing Wu, and Xuehua An, and Leiming Cai, and Xueping Zhao
June 2019, Aquatic toxicology (Amsterdam, Netherlands),
Jinhua Jiang, and Shenggan Wu, and Changxing Wu, and Xuehua An, and Leiming Cai, and Xueping Zhao
January 2017, Aquatic toxicology (Amsterdam, Netherlands),
Jinhua Jiang, and Shenggan Wu, and Changxing Wu, and Xuehua An, and Leiming Cai, and Xueping Zhao
August 2014, Toxicology and applied pharmacology,
Jinhua Jiang, and Shenggan Wu, and Changxing Wu, and Xuehua An, and Leiming Cai, and Xueping Zhao
November 2014, Environmental toxicology and chemistry,
Copied contents to your clipboard!