Urea-induced inactivation, dissociation, and unfolding of the allosteric phosphofructokinase from Escherichia coli. 1989

G L Bras, and W Teschner, and D Deville-Bonne, and J R Garel
Laboratoire d'Enzymologie, CNRS, 91198 Gif-sur-Yvette, France.

The influence of urea on the allosteric phosphofructokinase from Escherichia coli has been studied by measuring the changes in enzymatic activity, protein fluorescence, circular dichroism, and retention in size-exclusion chromatography. Tetrameric, dimeric, and monomeric forms of the protein can be discriminated by their elution from a high-performance liquid chromatography gel filtration column. Three successive steps can be detected during the urea-induced denaturation of phosphofructokinase: (i) the dissociation of the native tetramer into dimers which abolishes the activity; (ii) the dissociation of dimers into monomers which exposes the unique tryptophan, Trp-311, to the aqueous solvent; (iii) the unfolding of the monomers which disrupts most of the secondary structure. This pathway involves the ordered dissociation of the interfaces between subunits and supports a previous hypothesis (Deville-Bonne et al., 1989). Phosphofructokinase can be quantitatively renatured from urea solutions, provided that precautions are taken to avoid the aggregation of one insoluble monomeric state. The renaturation of phosphofructokinase from urea implies three steps: an initial folding reaction within the monomeric state is followed by two successive association steps. The faster association step restores the native fluorescence, and the slower regenerates the active enzyme. The renaturation and denaturation of phosphofructokinase correspond to the complex pathway: tetramer in equilibrium dimer in equilibrium folded monomer in equilibrium unfolded monomer. It is found that the subunit interface which forms the regulatory site is more stable and associates 40 times more rapidly than the subunit interface which forms the active site.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010732 Phosphofructokinase-1 An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE; PHOSPHOFRUCTOKINASE-1, LIVER TYPE; and PHOSPHOFRUCTOKINASE-1, TYPE C; found in platelets, brain, and other tissues. 6-Phosphofructokinase,6-Phosphofructo-1-kinase,Fructose-6-P 1-Kinase,Fructose-6-phosphate 1-Phosphotransferase,6 Phosphofructokinase,Phosphofructokinase 1
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric
D013861 Thiocyanates Organic derivatives of thiocyanic acid which contain the general formula R-SCN. Rhodanate,Rhodanates
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan

Related Publications

G L Bras, and W Teschner, and D Deville-Bonne, and J R Garel
April 1984, The Journal of biological chemistry,
G L Bras, and W Teschner, and D Deville-Bonne, and J R Garel
August 1995, Protein science : a publication of the Protein Society,
G L Bras, and W Teschner, and D Deville-Bonne, and J R Garel
June 1995, Journal of molecular biology,
G L Bras, and W Teschner, and D Deville-Bonne, and J R Garel
November 1985, The Journal of biological chemistry,
G L Bras, and W Teschner, and D Deville-Bonne, and J R Garel
January 1968, Journal of molecular biology,
G L Bras, and W Teschner, and D Deville-Bonne, and J R Garel
August 1996, International journal of peptide and protein research,
G L Bras, and W Teschner, and D Deville-Bonne, and J R Garel
June 1991, Biochemistry,
G L Bras, and W Teschner, and D Deville-Bonne, and J R Garel
September 1991, European journal of biochemistry,
G L Bras, and W Teschner, and D Deville-Bonne, and J R Garel
May 2007, Biochemistry,
Copied contents to your clipboard!