Structure of the alpha-, beta-, and gamma-heavy chains of 22 S outer arm dynein obtained from Tetrahymena cilia. 1989

S P Marchese-Ragona, and K C Facemyer, and K A Johnson
Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16803.

Here we document the UV-induced, vanadate-dependent cleavage of the alpha-, beta-, and gamma-heavy chains of 22 S outer arm dynein obtained from Tetrahymena cilia. All three polypeptides have a single site of photocleavage in the presence of Mg2+, ATP, and vanadate (termed V1 cleavage). The alpha-chain yields complementary fragments with masses of 232 and 185 kDa, the beta-chain has complementary fragments with masses of 225 and 195 kDa, and the gamma-chain has complementary fragments with masses of 242 and 161 kDa. In the absence of ATP, only the beta-chain undergoes V1 cleavage. All three polypeptides have one single site of V2 cleavage, which are unaffected by the presence of nucleotide and only require the presence of Mn2+ and vanadate. V2 cleavage always occurs on the larger V1 fragments and is separated from the V1 site by 52, 48, and 57 kDa for the alpha-, beta-, and gamma-heavy chains, respectively. We have also found a third type of UV-induced vanadate-dependent cleavage which we have termed VMT cleavage. VMT cleavage occurs when dynein is bound to microtubules in an ATP-sensitive manner under V1 solution conditions that should only support cleavage of the beta-chain (i.e. vanadate, Mg2+, and absence of ATP). Under these conditions V1 cleavage of the beta-chain and V2 cleavage of all three chains occur. This is the first documented evidence of V2 cleavage occurring under V1 solution conditions and implies a change in dynein structure when it binds to a microtubule. Using a combination of polyclonal and monoclonal antibodies, we have been able to construct linear polypeptide maps of all three heavy chains. Their relationship to the polypeptide maps previously obtained for heavy chains obtained from the dynein of Chlamydomonas and sea urchin axonemes is discussed.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D002923 Cilia Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed) Motile Cilia,Motile Cilium,Nodal Cilia,Nodal Cilium,Primary Cilia,Primary Cilium,Cilium,Cilia, Motile,Cilia, Nodal,Cilia, Primary,Cilium, Motile,Cilium, Nodal,Cilium, Primary
D004398 Dyneins A family of multi-subunit cytoskeletal motor proteins that use the energy of ATP hydrolysis, generated by a ring of AAA ATPASES in the dynein heavy chain, to power a variety of cellular functions. Dyneins fall into two major classes based upon structural and functional criteria. ATPase, Dynein,Adenosinetriphosphatase, Dynein,Dynein,Dynein ATPase,Dynein Adenosinetriphosphatase,Dynein Heavy Chain,Dynein Intermediate Chain,Dynein Light Chain,Dynein Light Intermediate Chain,Adenosine Triphosphatase, Dynein,Dynein Heavy Chains,Dynein Intermediate Chains,Dynein Light Chains,Dynein Light Intermediate Chains,Chain, Dynein Heavy,Chain, Dynein Intermediate,Chain, Dynein Light,Chains, Dynein Heavy,Chains, Dynein Intermediate,Chains, Dynein Light,Dynein Adenosine Triphosphatase,Heavy Chain, Dynein,Heavy Chains, Dynein,Intermediate Chain, Dynein,Intermediate Chains, Dynein,Light Chain, Dynein,Light Chains, Dynein
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013768 Tetrahymena A genus of ciliate protozoa commonly used in genetic, cytological, and other research. Tetrahymenas

Related Publications

S P Marchese-Ragona, and K C Facemyer, and K A Johnson
June 1989, The Journal of biological chemistry,
S P Marchese-Ragona, and K C Facemyer, and K A Johnson
January 2000, Methods in cell biology,
S P Marchese-Ragona, and K C Facemyer, and K A Johnson
January 1988, The Journal of cell biology,
S P Marchese-Ragona, and K C Facemyer, and K A Johnson
July 1988, The Journal of biological chemistry,
S P Marchese-Ragona, and K C Facemyer, and K A Johnson
November 1988, The Journal of cell biology,
S P Marchese-Ragona, and K C Facemyer, and K A Johnson
May 2004, Cell motility and the cytoskeleton,
S P Marchese-Ragona, and K C Facemyer, and K A Johnson
January 1999, The Journal of eukaryotic microbiology,
S P Marchese-Ragona, and K C Facemyer, and K A Johnson
May 1977, Biochimica et biophysica acta,
S P Marchese-Ragona, and K C Facemyer, and K A Johnson
October 1990, The Journal of biological chemistry,
Copied contents to your clipboard!