T-B-cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction. 2015

Dan Liu, and Heping Xu, and Changming Shih, and Zurong Wan, and Xiaopeng Ma, and Weiwei Ma, and Dan Luo, and Hai Qi
Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, 100084 Beijing, China.

The germinal centre (GC) reaction supports affinity-based B-cell competition and generates high-affinity bone-marrow plasma cells (BMPCs). How follicular T-helper (TFH) cells regulate GC selection is not clear. Using competitive mixed chimaera, we show here that, beyond the role in promoting TFH development, ICOSL (inducible T-cell co-stimulator ligand, also known as ICOSLG) is important for individual B cells to competitively participate in the GC reaction and to develop into BMPCs. Using intravital imaging aided by a calcium reporter, we further show that ICOSL promotes an 'entangled' mode of TFH-B-cell interactions, characterized by brief but extensive surface engagement, productive T-cell calcium spikes, and B-cell acquisition of CD40 signals. Reiterated entanglement promotes outer-zone co-localization of outcompeting GC B cells together with TFH cells, affording the former increased access to T-cell help. ICOSL on GC B cells is upregulated by CD40 signals. Such an intercellular positive feedback between contact-dependent help and ICOSL-controlled entanglement promotes positive selection and BMPC development, as evidenced by observations that higher-affinity B-cell receptor variants are enriched in the ICOSL(high) fraction, that numerically disadvantaged ICOSL-deficient GC B cells or BMPCs exhibit strong affinity compensation in competitive chimaera, and that when GC competition proceeds without ICOSL, selection of high-affinity variants in otherwise normal GC reactions is impaired. By demonstrating entanglement as the basic form of GC TFH-B-cell interactions, identifying ICOSL as a molecular linkage between T-B interactional dynamics and positive selection for high-affinity BMPC formation, our study reveals a pathway by which TFH cells control the quality of long-lived humoral immunity.

UI MeSH Term Description Entries
D010950 Plasma Cells Specialized forms of antibody-producing B-LYMPHOCYTES. They synthesize and secrete immunoglobulin. They are found only in lymphoid organs and at sites of immune responses and normally do not circulate in the blood or lymph. (Rosen et al., Dictionary of Immunology, 1989, p169 & Abbas et al., Cellular and Molecular Immunology, 2d ed, p20) Plasmacytes,Cell, Plasma,Cells, Plasma,Plasma Cell,Plasmacyte
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D006377 T-Lymphocytes, Helper-Inducer Subpopulation of CD4+ lymphocytes that cooperate with other lymphocytes (either T or B) to initiate a variety of immune functions. For example, helper-inducer T-cells cooperate with B-cells to produce antibodies to thymus-dependent antigens and with other subpopulations of T-cells to initiate a variety of cell-mediated immune functions. Helper Cell,Helper Cells,Helper T Cell,Helper-Inducer T-Lymphocytes,Inducer Cell,Inducer Cells,T-Cells, Helper-Inducer,T-Lymphocytes, Helper,T-Lymphocytes, Inducer,Helper T-Cells,Cell, Helper T,Cells, Helper T,Helper Inducer T Lymphocytes,Helper T Cells,Helper T-Cell,Helper T-Lymphocyte,Helper T-Lymphocytes,Helper-Inducer T-Cell,Helper-Inducer T-Cells,Helper-Inducer T-Lymphocyte,Inducer T-Lymphocyte,Inducer T-Lymphocytes,T Cell, Helper,T Cells, Helper,T Cells, Helper Inducer,T Lymphocytes, Helper,T Lymphocytes, Helper Inducer,T Lymphocytes, Inducer,T-Cell, Helper,T-Cell, Helper-Inducer,T-Cells, Helper,T-Lymphocyte, Helper,T-Lymphocyte, Helper-Inducer,T-Lymphocyte, Inducer
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Dan Liu, and Heping Xu, and Changming Shih, and Zurong Wan, and Xiaopeng Ma, and Weiwei Ma, and Dan Luo, and Hai Qi
April 2022, Nature,
Dan Liu, and Heping Xu, and Changming Shih, and Zurong Wan, and Xiaopeng Ma, and Weiwei Ma, and Dan Luo, and Hai Qi
October 2008, Nature,
Dan Liu, and Heping Xu, and Changming Shih, and Zurong Wan, and Xiaopeng Ma, and Weiwei Ma, and Dan Luo, and Hai Qi
May 1995, Cytokine,
Dan Liu, and Heping Xu, and Changming Shih, and Zurong Wan, and Xiaopeng Ma, and Weiwei Ma, and Dan Luo, and Hai Qi
November 2021, bioRxiv : the preprint server for biology,
Dan Liu, and Heping Xu, and Changming Shih, and Zurong Wan, and Xiaopeng Ma, and Weiwei Ma, and Dan Luo, and Hai Qi
February 1995, Immunology today,
Dan Liu, and Heping Xu, and Changming Shih, and Zurong Wan, and Xiaopeng Ma, and Weiwei Ma, and Dan Luo, and Hai Qi
June 2012, Trends in immunology,
Dan Liu, and Heping Xu, and Changming Shih, and Zurong Wan, and Xiaopeng Ma, and Weiwei Ma, and Dan Luo, and Hai Qi
January 1982, Advances in experimental medicine and biology,
Dan Liu, and Heping Xu, and Changming Shih, and Zurong Wan, and Xiaopeng Ma, and Weiwei Ma, and Dan Luo, and Hai Qi
March 2021, Nature,
Dan Liu, and Heping Xu, and Changming Shih, and Zurong Wan, and Xiaopeng Ma, and Weiwei Ma, and Dan Luo, and Hai Qi
January 1980, Virchows Archiv. B, Cell pathology including molecular pathology,
Dan Liu, and Heping Xu, and Changming Shih, and Zurong Wan, and Xiaopeng Ma, and Weiwei Ma, and Dan Luo, and Hai Qi
March 2020, Blood,
Copied contents to your clipboard!