Cellular expression profile of RhoA in rats with spinal cord injury. 2014

Wen-Jie Wei, and Zhi-Yuan Yu, and Huai-Jie Yang, and Min-Jie Xie, and Wei Wang, and Xiang Luo
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

RhoA, a small GTPase, is involved in a wide array of cellular functions in the central nervous system, such as cell motility, cytoskeleton rearrangement, transcriptional regulation, phagocytosis and cell growth. It is not known how spinal cord injury (SCI) affects the expression of RhoA in different nerve cells. In the present study, we investigated the changes of RhoA expression in remote areas of the injury at the 3rd, 7th and 30th day after SCI, which was established by T10 contusion method. Moreover, we examine its expression profile in neurons, astrocytes and microglia. RhoA was found to be weakly expressed in these nerve cells in normal spinal cord. Western blotting showed that, after SCI, the total RhoA expression was up-regulated, and the RhoA expression was increased and peaked at the 7th day. Double immunostaining revealed specific and temporal expression patterns of RhoA in different nerve cells. The expression of RhoA in neurons started to increase at day 3, peaked at day 7 and then decreased slightly at day 30. Expression of RhoA in astrocytes increased moderately after SCI and peaked at day 7. There was no obvious change in RhoA expression in microglia after SCI in remote areas. This study demonstrated that, after SCI, RhoA expression exhibited different patterns with different nerve cells of spinal cord. RhoA expression patterns also changed with time after SCI, and among different nerve cells in the injured spinal cord. These findings can help us better understand the roles of RhoA in SCI.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D013119 Spinal Cord Injuries Penetrating and non-penetrating injuries to the spinal cord resulting from traumatic external forces (e.g., WOUNDS, GUNSHOT; WHIPLASH INJURIES; etc.). Myelopathy, Traumatic,Injuries, Spinal Cord,Post-Traumatic Myelopathy,Spinal Cord Contusion,Spinal Cord Laceration,Spinal Cord Transection,Spinal Cord Trauma,Contusion, Spinal Cord,Contusions, Spinal Cord,Cord Contusion, Spinal,Cord Contusions, Spinal,Cord Injuries, Spinal,Cord Injury, Spinal,Cord Laceration, Spinal,Cord Lacerations, Spinal,Cord Transection, Spinal,Cord Transections, Spinal,Cord Trauma, Spinal,Cord Traumas, Spinal,Injury, Spinal Cord,Laceration, Spinal Cord,Lacerations, Spinal Cord,Myelopathies, Post-Traumatic,Myelopathies, Traumatic,Myelopathy, Post-Traumatic,Post Traumatic Myelopathy,Post-Traumatic Myelopathies,Spinal Cord Contusions,Spinal Cord Injury,Spinal Cord Lacerations,Spinal Cord Transections,Spinal Cord Traumas,Transection, Spinal Cord,Transections, Spinal Cord,Trauma, Spinal Cord,Traumas, Spinal Cord,Traumatic Myelopathies,Traumatic Myelopathy
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017628 Microglia The third type of glial cell, along with astrocytes and oligodendrocytes (which together form the macroglia). Microglia vary in appearance depending on developmental stage, functional state, and anatomical location; subtype terms include ramified, perivascular, ameboid, resting, and activated. Microglia clearly are capable of phagocytosis and play an important role in a wide spectrum of neuropathologies. They have also been suggested to act in several other roles including in secretion (e.g., of cytokines and neural growth factors), in immunological processing (e.g., antigen presentation), and in central nervous system development and remodeling. Microglial Cell,Cell, Microglial,Microglial Cells,Microglias

Related Publications

Wen-Jie Wei, and Zhi-Yuan Yu, and Huai-Jie Yang, and Min-Jie Xie, and Wei Wang, and Xiang Luo
January 2016, Neural regeneration research,
Wen-Jie Wei, and Zhi-Yuan Yu, and Huai-Jie Yang, and Min-Jie Xie, and Wei Wang, and Xiang Luo
June 2005, The Journal of comparative neurology,
Wen-Jie Wei, and Zhi-Yuan Yu, and Huai-Jie Yang, and Min-Jie Xie, and Wei Wang, and Xiang Luo
September 2006, Zhonghua yi xue za zhi,
Wen-Jie Wei, and Zhi-Yuan Yu, and Huai-Jie Yang, and Min-Jie Xie, and Wei Wang, and Xiang Luo
February 2012, Neural regeneration research,
Wen-Jie Wei, and Zhi-Yuan Yu, and Huai-Jie Yang, and Min-Jie Xie, and Wei Wang, and Xiang Luo
January 2014, Journal of molecular neuroscience : MN,
Wen-Jie Wei, and Zhi-Yuan Yu, and Huai-Jie Yang, and Min-Jie Xie, and Wei Wang, and Xiang Luo
July 2018, Neuroscience,
Wen-Jie Wei, and Zhi-Yuan Yu, and Huai-Jie Yang, and Min-Jie Xie, and Wei Wang, and Xiang Luo
February 2008, Journal of molecular neuroscience : MN,
Wen-Jie Wei, and Zhi-Yuan Yu, and Huai-Jie Yang, and Min-Jie Xie, and Wei Wang, and Xiang Luo
February 2013, Journal of molecular neuroscience : MN,
Wen-Jie Wei, and Zhi-Yuan Yu, and Huai-Jie Yang, and Min-Jie Xie, and Wei Wang, and Xiang Luo
August 2020, Molecular medicine reports,
Wen-Jie Wei, and Zhi-Yuan Yu, and Huai-Jie Yang, and Min-Jie Xie, and Wei Wang, and Xiang Luo
January 2021, Frontiers in cellular neuroscience,
Copied contents to your clipboard!