BM 13.505, a selective thromboxane receptor antagonist, reduces myocardial infarct size following coronary artery reperfusion. 1989

E F Smith, and C Q Earl, and J W Egan
Department of Pharmacology, Smith Kline and French Laboratories, King of Prussia, PA 19406.

This study was designed to assess the effectiveness of the thromboxane receptor antagonist, BM 13.505, in limiting myocardial infarct size in rats subjected to 30 min of coronary artery occlusion followed by reperfusion for 5.5 hr (MI/R). Myocardial infarct size was determined histochemically with triphenyltetrazolium chloride staining of the left ventricle. BM 13.505 (30 mg/kg, i.p.) was administered 1 min prior to coronary artery occlusion. In MI/R-vehicle treated animals, myocardial infarct size was 39 +/- 6% of the left ventricle. In MI/R-BM 13.505 treated animals, reperfusion injury was reduced by 50% to 19 +/- 7% of the left ventricle (p less than 0.05, compared to the MI/R-vehicle group). There were no significant differences in mean arterial blood pressure, heart rate, platelet count or white blood cell count between the treatment groups. Incubation of cultured L929 cells with the thromboxane/endoperoxide mimetic U 46619 produced a cytolytic effect, with an EC50 value of 125 microM. Addition of BM 13.505 at concentrations up to 30 microM did not protect against the cytolytic effect of U 46619, suggesting a non-receptor-mediated mechanism. These data indicate that hemodynamic, hematologic or cytoprotective factors do not explain the cardioprotective effects of BM 13.505. These results provide further evidence that antagonism of thromboxane receptors is beneficial in myocardial ischemia/reperfusion injury.

UI MeSH Term Description Entries
D008297 Male Males
D009203 Myocardial Infarction NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular
D010648 Phenylacetates Derivatives of phenylacetic acid. Included under this heading are a variety of acid forms, salts, esters, and amides that contain the benzeneacetic acid structure. Note that this class of compounds should not be confused with derivatives of phenyl acetate, which contain the PHENOL ester of ACETIC ACID. Benzeneacetates,Benzeneacetic Acids,Phenylacetic Acids,Acids, Benzeneacetic,Acids, Phenylacetic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011982 Receptors, Prostaglandin Cell surface receptors that bind prostaglandins with high affinity and trigger intracellular changes which influence the behavior of cells. Prostaglandin receptor subtypes have been tentatively named according to their relative affinities for the endogenous prostaglandins. They include those which prefer prostaglandin D2 (DP receptors), prostaglandin E2 (EP1, EP2, and EP3 receptors), prostaglandin F2-alpha (FP receptors), and prostacyclin (IP receptors). Prostaglandin Receptors,Prostaglandin Receptor,Receptor, Prostaglandin,Receptors, Prostaglandins,Prostaglandins Receptors
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E F Smith, and C Q Earl, and J W Egan
January 1993, Archives internationales de pharmacodynamie et de therapie,
E F Smith, and C Q Earl, and J W Egan
February 1989, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!