Two different vestigial like 4 genes are differentially expressed during Xenopus laevis development. 2014

María-Guadalupe Barrionuevo, and Manuel J Aybar, and Celeste Tríbulo
Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina.

The vestigial gene (vg) was first characterized in Drosophila and several homologues were identified in vertebrates and called vestigial like 1-4 (vgll1-4). Vgll proteins interact with the transcription factors TEF-1 and MEF-2 through a conserved region called TONDU (TDU). Vgll4s are characterized by two tandem TDU domains which differentiate them from other members of the vestigial family. In Xenopus two genes were identified as vgll4. Our bioinformatic analysis demonstrated that these two genes are paralogues and must be named differently. We designated them as vgll4 and vgll4l. In situ hybridization analysis revealed that the expression of these two genes is rather different. At gastrula stage, both were expressed in the animal pole. However, at neurula stage, vgll4 was mainly expressed in the neural plate and neural folds, while vgll4l prevailed in the neural folds and epidermis. From the advanced neurula stage onward, expression of both genes was strongly enhanced in neural tissues, anterior neural plate, migrating neural crest, optic and otic vesicles. Nevertheless, there were some differences: vgll4 presented somite expression and vgll4l was localized at the skin and notochord. Our results demonstrate that Xenopus has two orthologues of the vgll4 gene, vgll4 and vgll4l with differential expression in Xenopus embryos and they may well have different roles during development.

UI MeSH Term Description Entries
D009432 Neural Crest The two longitudinal ridges along the PRIMITIVE STREAK appearing near the end of GASTRULATION during development of nervous system (NEURULATION). The ridges are formed by folding of NEURAL PLATE. Between the ridges is a neural groove which deepens as the fold become elevated. When the folds meet at midline, the groove becomes a closed tube, the NEURAL TUBE. Neural Crest Cells,Neural Fold,Neural Groove,Cell, Neural Crest,Cells, Neural Crest,Crest, Neural,Crests, Neural,Fold, Neural,Folds, Neural,Groove, Neural,Grooves, Neural,Neural Crest Cell,Neural Crests,Neural Folds,Neural Grooves
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D005775 Gastrula The developmental stage that follows BLASTULA or BLASTOCYST. It is characterized by the morphogenetic cell movements including invagination, ingression, and involution. Gastrulation begins with the formation of the PRIMITIVE STREAK, and ends with the formation of three GERM LAYERS, the body plan of the mature organism. Archenteron,Blastopore,Gastrocoele,Primitive Gut,Archenterons,Blastopores,Gastrocoeles,Gastrulas,Gut, Primitive,Guts, Primitive,Primitive Guts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D019170 Somites Paired, segmented masses of MESENCHYME located on either side of the developing spinal cord (neural tube). Somites derive from PARAXIAL MESODERM and continue to increase in number during ORGANOGENESIS. Somites give rise to SKELETON (sclerotome); MUSCLES (myotome); and DERMIS (dermatome). Somite
D029867 Xenopus Proteins Proteins obtained from various species of Xenopus. Included here are proteins from the African clawed frog (XENOPUS LAEVIS). Many of these proteins have been the subject of scientific investigations in the area of MORPHOGENESIS and development. Xenopus laevis Proteins

Related Publications

María-Guadalupe Barrionuevo, and Manuel J Aybar, and Celeste Tríbulo
June 1999, Mechanisms of development,
María-Guadalupe Barrionuevo, and Manuel J Aybar, and Celeste Tríbulo
September 1991, Proceedings of the National Academy of Sciences of the United States of America,
María-Guadalupe Barrionuevo, and Manuel J Aybar, and Celeste Tríbulo
November 1994, Endocrinology,
María-Guadalupe Barrionuevo, and Manuel J Aybar, and Celeste Tríbulo
July 2008, PloS one,
María-Guadalupe Barrionuevo, and Manuel J Aybar, and Celeste Tríbulo
May 2001, Journal of experimental botany,
María-Guadalupe Barrionuevo, and Manuel J Aybar, and Celeste Tríbulo
March 1985, Nucleic acids research,
María-Guadalupe Barrionuevo, and Manuel J Aybar, and Celeste Tríbulo
March 2009, Developmental dynamics : an official publication of the American Association of Anatomists,
María-Guadalupe Barrionuevo, and Manuel J Aybar, and Celeste Tríbulo
October 1992, Developmental biology,
María-Guadalupe Barrionuevo, and Manuel J Aybar, and Celeste Tríbulo
May 1993, Gene,
María-Guadalupe Barrionuevo, and Manuel J Aybar, and Celeste Tríbulo
January 2002, The Journal of biological chemistry,
Copied contents to your clipboard!